
q
>
Z
<
o
LL

TO

<D
•o

'5
o

r>»

Naval Surface Warfare Center
Carderock Division
West Bethesda, MD 20817-5700

NSWCCD-50-TR-2011/025 April 2011

Hydromechanics Department Report

Guide to NavyFOAM V1.0
by

Hua Shan, Keegan Delaney, Sung-Eun Kim, Bong Rhee, Joseph Gorski
and Michael Ebert

o 3
Q
O
O
5
CO Approved for Public Release: Distribution Unlimited

2O\\OD\10\\

UNCLASSIFIED

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188). 1215 Jefferson Davis Highway, Suite 1204. Arlington. VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law. no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
14-Mar-2011

2. REPORT TYPE
Final

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

Guide to NavyFOAM VI.0

5a. CONTRACT NUMBER

Sb. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Hua Shan, Keegan Delaney,
Gorski and Michael Ebert

5d. PROJECT NUMBER

Sung-Eun Kim, Bong Rhee, Joseph 5e. TASK NUMBER

5f. WORK UNIT NUMBER
11-1-5705-411

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES)

Naval Surface Warfare Center
Carderock Division
9500 MacArthur Boulevard
West Bethesda, MD 20817-5700

8. PERFORMING ORGANIZATION REPORT
NUMBER

NSWCCD-50-TR-2011/025

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
DoD HPC Modernization Program
Office
Attn: Dr. Douglass Post
10501 Furnace Road
Lorton, VA 22079

10. SPONSOR/MONITORS ACRONYM(S)

11. SPONSOR/MONITORS REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public Release: Distribution Unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report describes NavyFOAM V1.0, a computational fluid dynamics (CFD) capability based on Reynolds-
averaged Navier-Stokes equations (RANSE) aimed at predicting turbulent single- and two-phase flows
around ship hulls. The CFD capability employs a finite-volume discretization that allows use of
arbitrary polyhedral elements. The free surface is captured using a volume-fraction method capable of
accurately resolving sharp interfaces. NavyFOAM has been developed using an open-source CFD software
tool-kit (OpenFOAM) that draws heavily upon object-oriented programming. The numerical methods and the
physical models in the original version of OpenFOAM have been upgraded in an effort to improve accuracy
and robustness of numerical solutions. The details of NavyFOAM VI.0 including the numerical methods and
the physical models are described in this report. NavyFOAM VI.0 is demonstrated for a number of flows
including: underwater bodies, turbulent free surface flows around the DTMB 5415 model and the KVLCC2
double-model. It is shown that the RANSE based approach can predict, with good accuracy, most of the
salient features of the turbulent free-surface flows around the subject hulls including resistance,
wave elevation, hull boundary layer and wake.

15. SUBJECT TERMS
Reynolds Averaged Navier-Stokes (RANS), computational fluid dynamics
OpenFOAM, Object Oriented Programming (OOP)

(CFD), NavyFOAM,

16. SECURITY CLASSIFICATION OF:

a. REPORT
UNCLASSIFIED

b. ABSTRACT
UNCLASSIFIED

c. THIS PAGE
UNCLASSIFIED

17. LIMITATION
OF ABSTRACT

SAR

18. NUMBER
OF PAGES

142

19a. NAME OF RESPONSIBLE PERSON
Hua Shan
19b. TELEPHONE NUMBER (include area
code)
301-227-0573

i/ii
UNCLASSIFIED

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

UNCLASSIFIED

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions tor reducing
this burden to Department of Defense. Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0183). 1215 Jefferson Davis Highway, Suite 1204. Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law. no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
14-Mar-2011

2. REPORT TYPE
Final

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

Guide to NavyFOAM VI.0

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Hua Shan, Keegan Delaney, Sung-Eun Kim, Bong Rhee, Joseph
Gorski and Michael Ebert

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
11-1-5705-411

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES)

Naval Surface Warfare Center
Carderock Division
9500 MacArthur Boulevard
West Bethesda, MD 20817-5700

8. PERFORMING ORGANIZATION REPORT
NUMBER

NSWCCD-50-TR-2011/025

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
DoD HPC Modernization Program
Office
Attn: Dr. Douglass Post
10501 Furnace Road
Lorton, VA 22079

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSORVMONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION /AVAILABILITY STATEMENT
Approved for Public Release: Distribution Unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report describes NavyFOAM VI.0, a computational fluid dynamics (CFD) capability based on Reynolds-
averaged Navier-Stokes equations (RANSE) aimed at predicting turbulent single- and two-phase flows
around ship hulls. The CFD capability employs a finite-volume discretization that allows use of
arbitrary polyhedral elements. The free surface is captured using a volume-fraction method capable of
accurately resolving sharp interfaces. NavyFOAM has been developed using an open-source CFD software
tool-kit (OpenFOAM) that draws heavily upon object-oriented programming. The numerical methods and the
physical models in the original version of OpenFOAM have been upgraded in an effort to improve accuracy
and robustness of numerical solutions. The details of NavyFOAM VI.0 including the numerical methods and
the physical models are described in this report. NavyFOAM VI.0 is demonstrated for a number of flows
including: underwater bodies, turbulent free surface flows around the DTMB 5415 model and the KVLCC2
double-model. It is shown that the RANSE based approach can predict, with good accuracy, most of the
salient features of the turbulent free-surface flows around the subject hulls including resistance,
wave elevation, hull boundary layer and wake.

15. SUBJECT TERMS
Reynolds Averaged Navier-Stokes (RANS), computational fluid dynamics (CFD), NavyFOAM,
OpenFOAM, Object Oriented Programming (OOP)

16. SECURITY CLASSIFICATION OF:

a. REPORT
UNCLASSIFIED

b. ABSTRACT
UNCLASSIFIED

c. THIS PAGE
UNCLASSIFIED

17. LIMITATION
OF ABSTRACT

SAR

18. NUMBER
OF PAGES

142

19a. NAME OF RESPONSIBLE PERSON
Hua Shan
19b. TELEPHONE NUMBER (include area
code)
301-227-0573

i/ii

UNCLASSIFIED

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.1S

Contents

Page

Abstract 1

Administrative Information 1

Introduction 1

Technical Description 4

Governing Equations 4

Single Phase Flow 4

Multiphase Flow 4

Turbulence Models 5

Spatial and Temporal Discretization 5

Gradient Schemes 5

Gauss Integration 5

Cell-Based Calculation 5

Node-Based Calculation 6

Least Squares 6

Convection Schemes 8

Convection Boundedness Criterion (CBC) 8

Linear Schemes 9

Nonlinear Schemes 10

vanLeer Scheme (van Leer7) 10

Gamma Scheme (Jasak et al.8) 1 1

HYPER-C Scheme (Leonard4) 11

Ultimate-Quickest (UQ) Scheme (Leonard9) 12

Compressive Interface Capturing Scheme for Arbitrary
Meshes (CICSAM) (Ubbink& Issa10) 12

High Resolution Interface Capturing Scheme (HRIC)
(Muzaferija& Peric") 13

Modified HRIC (MHRIC) (Park et al.':) 14

Inter-Gamma Scheme (interGamma) (Jasak & Weller1) 14

Modified inter-Gamma Scheme (interGammaM) 15

Modified inter-Gamma Scheme (interGammaMD) 16

Interpolation Schemes 16

iii

Cell-based Surface Interpolation Schemes 16

Linear Interpolation Surface Interpolation Scheme 16

reconCentral Surface Interpolation Scheme 17

Upwind Deferred Correction (UPDC) Surface Interpolation
Schemes 17

Node-Based Surface Interpolation Schemes 18

Volume-to-Point Interpolation Schemes 18

Volume-to-Point Interpolation Based on PLWA 18

Volume-to-Point Interpolation Based on IDWA 20

Diffusion Schemes 21

Solution Algorithms 21

Pressure-Velocity Coupling 21

Solving the Pressure Equation 21

User's Guide 24

Gradient Schemes 24

Navy Least Squares Gradient Schemes 24

Interpolation Schemes 25

Cell-based Surface Interpolation Schemes 25

reconCentral Surface Interpolation Scheme 25

reconCentralDC Surface Interpolation Scheme 25

Node-based Surface Interpolation Schemes 26

reconPLWA Surface Interpolation Scheme 26

reconlDWA Surface Interpolation Scheme 26

Convection Schemes 27

Convection Boundedness Criterion (CBC) Schemes 27

Compressive Interface Capturing Scheme for Arbitrary Meshes
(CICSAM) 27

High Resolution Interface Capturing Scheme (HRJC) 28

Modified HRIC (MHRIC) 28

Inter-Gamma Scheme (interGamma) 29

Modified inter-Gamma Scheme (interGammaM) 29

Modified Inter-Gamma Scheme (interGammaMD) 30

Example Results 31

iv

Body-1 31

KVLCC2 34

DTMB Model 5415 35

Fixed Sinkage and Trim 35

Dynamic Sinkage and Trim 38

Joint High Speed Sealift (JHSS) 39

Unpowered Bare Hull Computations 40

Powered Computations with Waterjets 44

Summary 46

Appendix A: Supplemental User's Guide 47

controlDict 47

decomposeParDict 49

fvSchemes 50

fVSolution 51

Appendix B: Utility Programs 53

dataFunkyFieldComparison 53

Description 53

Usage 53

Installation 53

Expression Syntax 54

Example 54

NavyFOAMToTecplot 56

Description 56

Usage 56

Installation 57

Output 57

NavyCellSetToTecplot 57

Description 57

Usage 57

Installation 58

Output 58

NavyFaceSetToTecplot 58

Description 58

v

Usage 58

Installation 59

Output 59

Appendix C: icoFoam Lid Driven Cavity Tutorial 61

Pre-Processing and Case Setup 61

Mesh Input 61

constant/directory and the createPatch Command 64

Material Properties 71

0/ directory (Initial and Boundary Conditions) 72

system/directory (Solver Settings) 76

Running icoFoam 81

Post-Processing 83

Appendix D: simpleFOAM Body-1 Tutorial 85

Pre-Processing and Case Setup 85

Mesh Input 85

constant/ directory and the createPatch Command 89

Material Properties 95

0/ directory (Initial and Boundary Conditions) 95

system/ directory (Solver Settings) 103

Running the Case 111

Post-Processing 113

Appendix E: ransFSNavyFoam Wigley Hull Tutorial 115

Pre-Processing and Case Setup 115

constant/directory 115

0/ directory(Initial and Boundary Conditions) 121

System/Folder (Solver Settings) 127

Running the Case 137

Post-Processing 137

References 141

VI

Figures

Page

Figure 1. Stencil in cell-based gradient calculation in two-dimensions 6
Figure 2. Stencil in node-based gradient calculation in two-dimensions 6
Figure 3. Stencil in least-squares gradient calculation in two-dimensions 7
Figure 4. Illustration of nodes and face in one-dimension 8
Figure 5. Normalized variable diagram (NVD) with CBC (the shaded region) 9
Figure 6. NVD of linear schemes with CBC 10
Figure 7. NVD of vanLeer scheme with CBC 11
Figure 8. NVD of Gamma scheme with CBC 11
Figure 9. NVD of HYPER-C scheme with CBC 12
Figure 10. NVD of UQ scheme with CBC 12
Figure 11. Angle 9f 13

Figure 12. NVD of CICSAM scheme with CBC 13
Figure 13. NVD of HRIC scheme with CBC 14
Figure 14. NVD of MHRIC scheme with CBC 14
Figure 15. NVD of inter-Gamma scheme with CBC 15
Figure 16. NVD of interGammaM scheme with CBC 15
Figure 17. Cell-based interpolation of face-center value 16
Figure 18. Node-based interpolation of face-center value 18
Figure 19. Stencil in cell-based gradient calculation in two-dimensions 18
Figure 20. Calculating face-normal gradient 21
Figure 21. Example of gradSchemes sub-dictionary 24
Figure 22. Example of interpolationSchemes sub-dictionary 25
Figure 23. Example of divSchemes sub-dictionary 26
Figure 24. Example of interpolationSchemes sub-dictionary 26
Figure 25. Example of interpolationSchemes sub-dictionary 27
Figure 26. Example of divSchemes sub-dictionary 28
Figure 27. Example of divSchemes sub-dictionary 28
Figure 28. Example of divSchemes sub-dictionary 29
Figure 29. Example of divSchemes sub-dictionary 29
Figure 30. Example of divSchemes sub-dictionary 30
Figure 31. Example of divSchemes sub-dictionary 30
Figure 32. Body-1 geometry 31
Figure 33. Surface mesh on the body and symmetry plane (left) and surface mesh

with volume mesh cross cut (right) 32
Figure 34. Axial velocity (Ux) contours on the symmetry plane and pressure

(Press) contours on the hull 32
Figure 35. Skin friction coefficient (Q) and Pressure coefficient (Cp) plotted

along the length of the body 33
Figure 36. Axial velocity boundary layer plots at x/L = 0.755 (left), x/L = 0.846

(middle), x/L = 0.934 (right) 33
Figure 37. Stern flow of the KVLCC2 34
Figure 38. Grids used for the KVLCC2 34

vii

Figure 39. Contour of axial velocity at x/L = 0.9825 predicted on the two meshes.
Top - hybrid (prism + tet) unstructured mesh; Bottom - snappyHexMesh 35

Figure 40. Contour of turbulent kinetic energy at x/L = 0.9825 predicted on the
two meshes. Top - hybrid unstructured (prism + tet); Bottom -
snappyHexMesh 35

Figure 41. Grid for DTMB Model 5415 36
Figure 42. Contour of wave elevation for DTMB 5415 with SST k-m model result

on the 6 million cell mesh 36
Figure 43. Wave elevations along three longitudinal cuts obtained using SST k-m

model on three different meshes: top - y/L = 0.082; middle - y/L = 0.172;
bottom - y/L = 0.301 37

Figure 44. Wave elevations along three longitudinal cuts obtained using three
different turbulence models on the 6 million cell mesh : top - y/L = 0.082;
middle - y/L = 0.172; bottom - y/L = 0.301 37

Figure 45. Contour of axial velocity (U) at x/L = 0.935 obtained on 6 million
cells, a) measured; b) SST A-<y ; c) realizable k-e; d) Wilcox's k-co 38

Figure 46. Prediction of a) resistance, b) trim and c) sinkage for the DTMB 5415
model 39

Figure 47. JHSS concept vessel geometry 40
Figure 48. JHSS structured surface mesh on the bare hull 40
Figure 49. JHSS wave profile on the hull for various NavyFOAM meshes and

experimental measurements, scaled up to full scale (full scale LBP ~950
ft) 41

Figure 50. Inboard (left) and outboard (right) axial velocity boundary layer plots
for NavyFOAM free surface computations (OF), TENASI double-body
computations (TEN), and experimental measurements (Exp) 42

Figure 51. Sinkage and trim run time values plotted for three different Froude
numbers 42

Figure 52. Fixed and free sinkage and trim NavyFOAM free surface plots colored
by wave elevation 42

Figure 53. JHSS resistance for various Froude numbers predicted by experiment
and NavyFOAM 43

Figure 54. JHSS bare hull sinkage (top) and trim (bottom) predictions for
various Froude numbers 43

Figure 55. Surface mesh at the stem showing GGI region around waterjets 44
Figure 56. Axial velocity contours through the GGI modeled waterjet without

(left) and with (right) volume mesh overlayed 44
Figure 57. Axial velocity contours inside the waterjets 45
Figure 58. Powered JHSS free surface plot colored by wave elevation 45
Figure 59. Experimental photograph (left) and NavyFOAM post-processed JHSS

powered stern 46

VIII

Tables

Page

Table 1. Examples of top-level RANS solvers built using the OpenFOAM toolkit
for marine propulsor applications (GGI: grid-to-grid interpolation) 3

i\

THIS PAGE INTENTIONALLY LEFT BLANK

Abstract

This report describes NavyFOAM V1.0, a computational fluid dynamics (CFD)
capability based on Reynolds-averaged Navier-Stokes equations (RANSE) aimed at
predicting turbulent single- and two-phase flows around ship hulls. The CFD capability
employs a finite-volume discretization that allows use of arbitrary polyhedral elements. The
free surface is captured using a volume-fraction method capable of accurately resolving sharp
interfaces. NavyFOAM has been developed using an open-source CFD software tool-kit
(OpenFOAM) that draws heavily upon object-oriented programming. The numerical methods
and the physical models in the original version of OpenFOAM have been upgraded in an
effort to improve accuracy and robustness of numerical solutions. The details of NavyFOAM
V1.0 including the numerical methods and the physical models are described in this report.
NavyFOAM VI.0 is demonstrated for a number of flows including: underwater bodies,
turbulent free surface flows around the DTMB 5415 model and the K.VLCC2 double-model.
It is shown that the RANSE based approach can predict, with good accuracy, most of the
salient features of the turbulent free-surface flows around the subject hulls including
resistance, wave elevation, hull boundary layer and wake.

Administrative Information

The work described in this report was performed by the Computational
Hydromechanics Division (Code 5700) of the Hydromechanics Department at the Naval
Surface Warfare Center, Carderock Division (NSWCCD). This effort has been funded by the
Department of Defense High Performance Computing Modernization Program (HPCMP)
under the Computational Research and Engineering Acquisition Tools and Environments
(CREATE) Ship's Hydrodynamics Project.

Introduction

In the past two decades, computational fluid dynamics (CFD) has been established as
an indispensible tool for design and analysis in ship hydrodynamics. CFD has also
significantly expanded its realm, covering a broad spectrum of applications including:
resistance, powering, propulsion, maneuvering and seakeeping. The geometrical, physical
and operational complexity involved in ship hydrodynamics applications has led to the
addition of many features and functionalities in CFD codes. Furthermore, CFD is frequently
called upon to tackle multi-disciplinary applications such as fluid-structure interaction and
hydroacoustics applications that require coupling of CFD codes with other computational
mechanics software. Thus, general-purpose CFD codes, in attempts to cater to these diverse
needs, have become increasingly larger and more complex. Software complexity is a serious
issue which many legacy CFD codes face today, negatively impacting their overall efficacy in
terms of quality assurance, packaging, maintenance and extensions.

The Department of Defense High Performance Computing Modernization Program
(HPCMP) office, under the CREATE Ship's Hydrodynamics Project, has initiated an effort to
develop a CFD capability aimed at high-fidelity, high-performance, predictions of
hydrodynamic phenomena occurring around surface ships and submarines. The ultimate goal
of the project is to develop a high-fidelity CFD capability that can drastically shorten the design

I

cycles of surface ships and submarines, by answering technical questions on various aspects of
hydrodynamic performance of naval vessels at early design stages.

To meet the top-level requirements of the program, it was considered imperative that the
new CFD software be developed using modern software engineering practices. Among others,
it was concluded that object-oriented programming (OOP) with properly designed data
structure and code architecture is essential to facilitate development, quality assurance (QA),
deployment (packaging/release), maintenance, and extension of the software. Thus, wc started
with OpenFOAM (Weller et al.1), an open-source CFD software tool-kit written in C++
drawing heavily upon object-oriented programming (OOP). Efforts to develop a computational
framework using OpenFOAM had started out earlier with propulsors the target applications
(Kim et al."). The CREATE efforts have greatly benefited from our earlier works on turbulence
modeling, discretization schemes and solution algorithms. As of today, the OpenFOAM-based
computational framework comprises a suite of modified and newly written application (top-
level) solvers for single- and multi-phase flows, utilities and physics libraries built around the
OpenFOAM CFD tool-kit. We loosely refer to the computational framework as "NavyFOAM"
in order to distinguish it from the standard OpenFOAM offering.

NavyFOAM includes several top-level solvers, Table 1, aimed at ship hydrodynamics
applications, sRansFOAM (single-phase, steady RANSE solver), ransFSFOAM (RANSE-
based free-surface solver), and ransFSDyMFOAM (RANSE-based free-surface solver with
moving/deforming mesh), to name a few. That one has to deal with a number of top-level
solvers for different applications often surprises those who are used to the idea of developing
a monolithic CFD solver that can do everything. The philosophy adopted in OpenFOAM
eschews the monolithic approach.

This report consists of a number of sections, including:

• Technical description
• User's Guide
• Example Results
• Utility Programs
• Tutorials

Technical Description gives an overview of the theoretical formulation and the
numerical methods used in the RANSE solvers in NavyFOAM.

User's Guide is intended to help users learn how to run the codes without delving into
the details of the implementations. This chapter should be considered as an annex to
OpenFOAM's User's Guide. Those who are interested only in running the top-level solvers
provided in NavyFOAM should read this chapter and the Tutorials and can skip the other
chapters if they want to.

Example Results presents example problems run with NavyFOAM selected from
various applications including surface ships and underwater bodies.

Utility Programs is an appendix that describes the top-level applications newly added
to facilitate post-processing of the CFD results obtained using NavyFOAM.

Tutorials given in the appendices provide step-by-step instructions starting from
setting up the case to running the NavyFOAM solvers to exporting the results for post-
processing.

Table 1. Examples of top-level RANS solvers built using the OpenFOAM toolkit for marine
propulsor applications (GGI: grid-to-grid interpolation)

Solver Features/Functionalities Applications

sRansFoam
Single-phase, steady, RANSE, flow solver in the
inertial frame

Underwater bodies (without
free-surface effects)

ransFSFoam

Two-phase, unsteady, RANSE, flow solver in the
inertial or rotating frame with GGI

Surface ships with fixed
sinkage and trim
Propellers in open water
with uniform inflow

ransFSDyMFoan
Two-phase, unsteady RANSE, flow solver in the
inertial frame with dynamic mesh motion with GGI

Surface ships with
dynamic sinkage and trim
prediction
Propellers with non-
uniform inflow

Technical Description

NavyFOAM employs a cell-centered finite-volume method based on a multi-dimensional
linear reconstruction scheme that permits use of arbitrary polyhedral elements including
quadrilateral, hexahedral, triangular, tetrahedral, pyramidal, prismatic, and hybrid meshes. The
solution gradients at cell centers can be evaluated by applying the Green-Gauss theorem or by
the least-square method. Spatial and temporal discretizations formally have up to second-order
accuracy. The volume-fraction equation is solved using an implicit solver. The discretized
governing equations can be solved using a choice of iterative linear solvers such as point-implicit
Gauss-Seidel or algebraic multi-grid (AMG) methods. Velocity coupling to ensure mass
conservation (continuity) is effected using a projection algorithm. The entire NavyFOAM solver
suite can be run in parallel using domain decomposition and a public version of MPI (OpenMPI)
for message passing.

Governing Equations

The governing equations adopted in NavyFOAM consist of the continuity (mass
conservation) equation, momentum equations, turbulent transport equations, and a volume-
fraction equation. Which equations are solved in a top-level solver depends on whether the flow
is single-phase or multiphase.

Single Phase Flow

For single phase incompressible flow, the governing equations consist of the continuity
equation, the momentum equation, and the turbulence transport equation(s). The continuity
equation can be written in a differential form as:

VV = Q (1)

The momentum equation can be written as:

|^ + V(rn = -VF + V-{^//(vK + VF7')} (2)

where V is the velocity vector, P = — is the modified pressure, p is the hydrodynamic pressure,
P

p is the density, veff =v + v, is the effective viscosity, v is the kinematic viscosity, and r, is the

turbulent eddy viscosity.

Multiphase Flow

In the volume of fluid (VOF) method, the governing equations for two-phase flow consist
of the continuity equation, the momentum equation, the convection equation for volume fraction,
and the turbulence transport equation(s). The continuity equation is given by

VV=0 (3)

The momentum equation is given by

^P- + S7.(pVV) = -VP + v{Meff(vV + VVT)}+pg + (TKVr (4)

where ' is the volume fraction, g is the gravitational acceleration vector, <J is the surface

tension coefficient, and K is the interface curvature, neff = // + //, is the effective viscosity, // is

the dynamic viscosity, and //, is the turbulent eddy viscosity. The density is calculated by

P-YP\ +(|->')/7:> and tne dynamic viscosity by// = //(//,,/i2, y). The subscripts "1" and "2"
refer to the two phases or fluids. The convective transport equation for volume-fraction is

|^ + V.(Pr) = 0 (5)

Turbulence Models

NavyFOAM allows users to choose from the entire turbulence model suite available in
OpenFOAM. NavyFOAM additionally offers a Wilcox's k-co turbulence model (Wilcox), a
modified SST k-co model, and a custom version of Spalart and Allmaras" one-equation model.
Wall models are implemented in these newly available turbulence models so that the models can
be used with either a wall-resolving (y+ < 1) or a wall-skipping (y+ >30) mesh.

Spatial and Temporal Discretization

Gradient Schemes

Gauss Integration. The gradient can be calculated using the Gauss theorem

jV<pdSl= \ntpoT 6

«, r.

Assuming the gradient is constant in a cell, (6) can be approximated as

V^*77nZ«V^ (7)

where the subscript P denotes the cell center, | Qe | is the volume of the cell, and S, is the area

vector of each face of the cell.

Cell-Based Calculation. In a cell-based approach, the face-center value ' in (7) is
calculated using the cell-center value of ^ in neighboring cells, as shown in Figure 1. This
approach is used in OpenFOAM.

Figure 1. Stencil in cell-based gradient calculation in two-dimensions

Node-Based Calculation In a node-based approach, the nodal value of <p (red circles in
Figure 2) is First calculated using all neighboring cells of the node, then the face-center value (pt

in (7) is calculated using nodal values. As a result, the stencil involved in the gradient calculation
(all blue squares in Figure 2) is much larger than that in the cell-based approach.

Figure 2. Stencil in node-based gradient calculation in two-dimensions

Two types of node-based gradient calculations, i.e. the Pseudo-Laplacian-Wcighted-
Averaging (PLWA) and the Inverse-Distance-Weighted-Averaging (IDWA) have been
implemented in NavyFOAM. They differ in the way that the cell-centered volume field is
interpolated to the node point field. More details are described later.

Least Squares. The concept of least-squares calculation of gradients is easily illustrated
in two-dimensions. There should be no difficulty to extend it to three-dimensions. Suppose we
want to calculate the gradient of <p at the center of cell i, see Figure 3, the neighboring cells are k
= 1,2, and 3.

Figure 3. Stencil in least-squares gradient calculation in two-dimensions

In a general form, let Nh be the total number of neighboring cells, the neighboring cell-

center value of (p can be written as a Taylor expansion about the center of cell /'.

<Pk =<Pi+{^<P),-^lk+sik for£= 1,..., Nh (8)

where elk represents the higher-order errors. Defining a total error as the sum of weighted errors

using

*-£«?! (9)
* i

where wik is the weighting factor. Omitting the index / for brevity, Equation (8) can be written as

or in the form of Cartesian components

£k =<Pk~<P-

<Px Axk

<P> &yk

JPz. _Azk_
forA-=l,..., Nh

(10)

Substituting (10) into (9) and setting

BE n dE n , dE n = 0, = 0, and = 0
d<px d(py dcp.

to minimize the total error, one has

1 ' t< B P

ZW*(A**)2 £wt(Ax,Ay<) ^^(Ar^AzJ
t»i *=i *=i
N> Wj *»

*-i <=i *=i
N* Nh N„

Zwt(Ax4Az4) £wt(A.y,AzA) £w<(Az,)2

*=i *=i * i

-p)

Zw*Av*(^* -p)

-?)
*=l

(11)

The solution to the liner system in (11) gives the gradient calculated in the least-squares sense.

Convection Schemes

In finite volume methods, the convection term can be calculated using the Gauss theorem

jV-(V<p)dCl= \n(V<p)dr (12)

The surface integration in (12) can be approximately calculated as

\h{V(p)dY^{VS)((pf (13)

The convection scheme determines how the face-center value q>f is calculated. The most widely

referenced boundedness criterion using the normalized variable approach is Gaskell and Lau's
Convection-Boundedness Criterion (CBC) (Gaskell & Lau4).

Convection Boundedness Criterion (CBC). The concept of CBC is easily illustrated in
one-dimension as shown in Figure 4, where D is the donor cell, U is the upstream cell, and A is
the acceptor cell.

u ; D f

Figure 4. Illustration of nodes and face in one-dimension

Defining a normalized variable

<P-<PV <p
<PA-<PV

we thus have

VA-VV and 9A-9U ,

Based on the normalized variables, CBC states the following local boundedness criterion

^-^z-1 for fee[0.1]

Vt=V» for fee [0,1]

(14)

The graphical representation of CBC is often shown in the normalized variable diagram (NVD)
(Leonard) of Figure 5.

Figure 5. Normalized variable diagram (NVD) with CBC (the shaded region)

In general, the normalized face-center value can be written as a function of the
normalized value of the donor cell

<P, = /(fe) (15)

Linear Schemes. If the function/ in (15) is linear, the scheme is called a linear scheme.
Examples of linear schemes include:

Central differencing (CD) scheme

-, I- 1

Upwind differencing (UD) scheme

9, =9D

Downwind differencing (DD) scheme

9/ =1

(16)

(17)

(18)

Quadratic Upstream Interpolation for Convective Kinetics (QUICK) scheme

~ 3~ 3

Warming & Beam Second-Order Upwind (SOUD) scheme

~ 5~ 1

' 4 ' 8

The NVD of these schemes and the CBC region are shown in Figure 6.

UD

(19)

(20)

Figure 6. NVD of linear schemes with CBC

Nonlinear Schemes. The order barrier (Godunov6) for linear schemes implies that the
CBC schemes with accuracy of second-order or above must be nonlinear schemes, i.e. the
function / in (15) must be nonlinear. Hereafter, we summarize some of the CBC schemes
(limited schemes in NavyFOAM).

van Leer Scheme (van Leer)

/($) = •

Itp-cp1, ^e[0,1]

P. £*[0,i]
(21)

The NVD of the scheme and the CBC region are shown in Figure 7.

10

Figure 7. NVD of vanLeer scheme with CBC

Gamma Scheme (Jasak et al.)

nv) =
£«[0,1]

with — </?<-
10 2

The NVD of the scheme and the CBC region are shown in Figure 8.

a' *J

Figure 8. NVD of Gamma scheme with CBC

HYPER-C Scheme (Leonard)

fmin(l, J-ft, ^ e [0,1]
f(<P) = \ ~ ' ~ rn in ^ P*0,1]

(22)

(23)

The HYPER-C scheme requires that the local Courant number C, < 1. The NVD of the scheme

and the CBC region are shown in Figure 9.

11

slope =

Figure 9. NVD of HYPER-C scheme with CBC

Ultimate-Quickest (UQ) Scheme (Leonard)

. ,8C, v+O-C,)(6(S*3

W) min{-

£«[0,1]
(24)

The scheme requires that the local Courant number C, < 1. The NVD of the scheme and the

CBC region are shown in Figure 10.

1

\ f1 31

t

/ /
•

UQ

1
ll-4j / /

1 „. slope = — •

/ \ y

^ /
1/

i

f\ 1 V

Figure 10. NVD of UQ scheme with CBC

Compressive Interface Capturing Scheme for Arbitrary Meshes (CICSAM) (Ubbink&

(25)

Issa)

where y, = min

/($) = // /HYPER -C(£) + (1-77)/UQ(£)

(\ + cos 20,
1 . 9f is the angle between the normal unit vector of the front
)

(interface between two phases) and the vector pointing from D to A, see Figure 11.

12

Donor cell (D)
Acceptor cell (A)

Figure 11. Angle Gi

The NVD of the scheme and the CBC region are shown in Figure 12.

slope

Figure 12. NVD of CICSAM scheme with CBC

:Jli High Resolution Interface Capturing Scheme (HRIC) (Muzaferiia & Peric) Let

fA9) = \

2$, pe[(U]

I, £eri,I]
p, £«[0,1] and

fAv) = rfUv)H\-Yf)v Wlth Yf =^^,

The HRIC scheme can be written as

Av)
f2(v),
^/2(^) + (l-^)^ 0.3<C,<0.7
<p,

C; <0.3

0.3 *c,
c, >0.7

(26)

The NVD of the scheme and the CBC region are shown in Figure 13.

13

Figure 13. NVD of HRIC scheme with CBC

/-'i Modified HRIC (MHRIC) (Park et al.'-) Let

f2(V) =

2<p, <p e [0, \]

1, ^6[|,1]

l* *«[0',] and

min(^, /i(^))i pe[0,l]

l^, P*[0,1]

MHRIC can be written as

/(^) = r/./;(^) + (i-r/)/:(^) (27)

with/ A = J\cosdf | . The NVD of the scheme and the CBC region are shown in Figure 14.

1

1
f iv 5)

•

yw>
V i~

tjT

QUICK,''

* /

9 y 1 ^

Figure 14. NVD of MHRIC scheme with CBC

i k Inter-Gamma Scheme (interGamma) (Jasak & Weller)

/($) =

- 2$2 + 3p, <p e [0, ^]

P«[0,1]

(28)

14

The NVD of the scheme and the CBC region are shown in Figure 15.

t u'd

Figure 15. NVD of inter-Gamma scheme with CBC

Modified intcr-damma Scheme (lntcrGammaM) Let

Mv)-
-2p' + 3q>, <pe[0,±]

i M*,i]
9, P«[0,1]

be the original inter-Gamma scheme, which can be modified as follows

Av) =
Cf < 0.3

^/i(^) + (l-^)^ 03<Cf<0.7

Cf > 0.7

The NVD of the scheme and the CBC region are shown in Figure 16

(29)

Figure 16. NVD of interGammaM scheme with CBC

15

Modified inter-Gamma Scheme (interGammaMD) Let

Mv) =
-2p2+3p, £e[0,}]

l pe[±,l]
<P, P«[0,1]

be the original inter-Gamma scheme, and

The interGammaMD scheme can be written as

Av) = {
/2(£), C/<0.3

^/3(£) + (l-^)^ 0.3 SC,* 0.7
p, C, > 0.7

(30)

(31)

Interpolation Schemes

Cell-based Surface Interpolation Schemes.

In cell-center-based finite volume methods, it is often required to calculate the face-
center value. The interpolation schemes needed for non-convection terms will be introduced in
this section. The situation is illustrated in Figure 17. The owner and neighbor cells of the face
may or may not be located within a mesh block of a single processor.

Owner processor x Neighbor processor

, Processor interface

Owner ce

Owner cell

Neighbor cell

Neighbor cell »

(a) internal face (b) coupled processor face

Figure 17. Cell-based interpolation of face-center value

Linear Interpolation Surface Interpolation Scheme. The linear interpolation calculates
the face-center value as

<pf = k(pP+(i - xypt,

where A is the weighting factor calculated as

(32)

16

A = _ \nf-&N,

\nrArPr\ + \nf-ArNf\

The linear interpolation scheme may produce large errors due to non-orthogonality and skewness
of unstructured meshes.

reconCentral Surface Interpolation Scheme. The face-center value can be reconstructed
using both the value and the gradient at neighboring cell centers.

9/ -r[<Pr + (v^)p • ty + <p„ + (Vp)w • rNf] (33)

Upwind Deferred Correction (UPDC) Surface Interpolation Schemes. To improve
stability, the face-center value can sometimes be calculated using the concept of deferred
correction (Khosla & Rubin14; Hayase et al.15).

>«roU./_H „FOlKold
<Pf=<Pf +Wf-<P() (34)

where (pr
f
ov is the value calculated using a first-order upwind scheme, and <p" is the value

calculated using higher-order interpolation schemes. The superscript "old" represents the
previous time or iteration step. The candidates for the higher-order scheme may include the
reconCentral scheme and some of the higher-order limited schemes in the next section.

The first-order upwind scheme can be written as

<pff
ov = sign+(F;)<pP +[1 -sign+(F,)K (35)

where Ff =nf • Vf is the volume flux through the face, and

fl. Ff > 0 Si^io. F,<0
The higher-order normalized variable based limited schemes can be written as

tf =<Pr+-V('')(<PN-<Pr) (36)

where T(r) is the limiter function. Substituting (35) and (36) into (34) yields

<Pr
fr+[^(rX^-^)r". Ff>0

<P»+[\v(r)(<pr-<p„)fa, F,<0

17

(37)

Node-Based Surface Interpolation Schemes.

We consider a face of any polyhedral cell

f*

Figure 18. Node-based interpolation of face-center value

Let Ny be the total number of vertices of faces, the face-center value is calculated as the average

of the nodal values

1 r>
?V=Tr2X (38)

The nodal values are calculated using volume-to-point interpolation described in the following
section.

Volume-to-Point Interpolation Schemes

It is easier to illustrate in two-dimensions and the extension to three-dimension is rather
straightforward.

Figure 19. Stencil in cell-based gradient calculation in two-dimensions

In volume-to-point interpolation, the nodal value cpn is calculated as a weighted

averaging of surrounding cell-center values

^Ete^j/lXy) (39)
M /-I

where Nn is the total number of neighboring cells of node n, w;, is the weighting factor.

Volume-to-Point Interpolation Based on PLWA. In Pseudo-Laplacian-Weighted-
Averaging (PLWA) (Holmes & Connell 6; Frink ; Kim et al.), the weighting factors in
Equation (39) are calculated by solving the following optimization problem.

18

Giving the constraint

£(*„) = IX, (xr,-*J = 0
1=1

Uyn) = YJWcJ(ycj-yn) = 0 (40)

1=1

we need to find the weighting factors vv., that minimize the cost function

C = £,(rcAwcJ)
2 (41)

,=i

where Fc t = (xc,, vr,, zc,) is the position vector of the cell center, rn = (xn, yn, zn) is the position

vector of the node n, and rcl =\rcl-rn \= J(xcl -xn)
2 + (vr,-y„)2 +(zrJ -zH)

2 . The AH; , is

related to the weighting factor by w' = 1 + Awc 1.

Using the method of Lagrange multipliers, the Lagrange function is defined as

A(tvCll, wc:,..., wc ,v_; A,, Xy, X,) = C - 2[AxL(-x„) + KM>\)+ KU?*)] (42)

The optimal solution is found by solving the following equation

V».,.". ,,...»;.,.:-«..-l,.-l..A(W«-.l»Wr.2 —«Wf.A,.; 4»^»4)*° (43)

which can be written in matrix form

[diag(>-2)] -[Ar]'

[Ar]1 [0]

Aw

R
(44)

where

[diag(r)] =

19

[Ar] =

XcA~Xn y**~y» Zc.\~Z
n

Xc.2~Xn yC.2-yn Zc.2~Zn

Xc.N, Xn y<r.N, ^n Zc.N. Zn

Aw =

Aw
C.I

Aw. c.2

Aw.

R

K
V

K , and

\K -*j
Ry = ESo'.j -J>J
R: L>. -o

Solving the linear system of equations we obtain

-W and

Aw=[diag(r2)]-l[Ar]X

where

[I] = [Ar]'[diag(r2)rl[Ar]

(45)

Volume-to-Point Interpolation Based on IDWA. In Inverse-Distance-Weighted-
Averaging (IDWA), the weighting factors in Equation (39) are calculated based on the distance
between the node and each neighboring cell center.

I
w«m7F. (46)

with

rel =1 rc, - K |= yj(XeJ ~X„f+ (y„ -y„)2+ (Zr, " Z„ f

20

Diffusion Schemes

In finite volume methods, the diffusion term can be calculated using the Gauss theorem

fr(yV<p)dQ= jn(/V<p)dr

The surface integration in (47) can be approximately calculated as

\n-{yV<p)dY * J>« • V<p)fSf = 5>A)

(47)

(48)

Owner cell

face
Neighbor cell

Figure 20. Calculating face-normal gradient

The face-normal gradient can be calculated as

Kdnj
= ^ + cr.(v^

Ar,
snGrad correction

where C, = nf — Arps I \ AFP^ | is the non-orthogonal correction vector, and

(49)

(V^)/=AV^,+(1-A)V^

X is the inverse-distance weighting factor.

Solution Algorithms

Pressure- Velocity Coupling

Solving the Pressure Equation. The momentum equation can be written in discretized
form as a system of linear equations

AV +Vp =f

where V' is the velocity vector.

(50)

21

p* is the guessed pressure,

Vp = JV/JVQ
n

A = D - B = (Dm + Dhc) - B is the matrix of the linear equations,

D = (D„+Dfc) = diag(A)

Din = part of diag(A) contributed from internal faces

Dbc = part of diag(A) contributed from boundary faces

- B = A - D = off-diagonal part of A,

/— ft„ + fie ~ tne source vector absorbing any explicit term and source term,

fin =part of source vector contributed from internal faces, and

fk =part of source vector contributed from boundary faces.

Equation (50) can be written as

(D-B)V' + Vp' = f (51)

Giving guessed pressure,/?*, Equation (51) is solved for velocity, v. This is the
predictor step of the SIMPLE or PISO method. Because the velocity obtained from the predictor

step doesn't satisfy the continuity equation, both the pressurep' and velocity F'need to be
corrected.

In order to derive the discretized pressure equation, the following algebraic manipulation
was applied to the momentum equation. The matrix A of discretized momentum equations can
be written as

with

Let

and

A = D + D^""m' - D£""T - B = (D(„ + Dv) + D£*"v - D^""""v - B (52)

yycmpiav = comp0nent -average part of diag(A)contributed from boundary faces .

DD = D„. + Dr"v

BB = (B + Dr-DJ

22

thus

A = (DM + Dr°") - (B + D;;"""
V
 - Dte) = D0 - B;)

Now, Equation (50) can be written as

(D0-BD)f' + V=7 <53>

Let V and /?" be corrected velocity and pressure, respectively. They should satisfy the
discretized momentum equation (53), i.e.

(DD-BD)V" + Vp'=J (54)

which can be approximated as

DDV"-BnV' + Vp"=f (55)

Because DD in (55) is a diagonal matrix, it is trivial to solve (55) to obtain

V" = D-' (B0 T + /) - D-'Vp" = V - D'»?jp- (56)

where K = D^'(B;, P* + /) is the pseudo-velocity vector.

Substituting (56) into the continuity equation, V V" =0, we obtain the following discretized
Poisson equation for pressure

V(D-JVp")-VV (57)

It is shown later that Equation (57) incorporates the idea of the Rhie-Chow momentum
interpolation scheme.

In the PISO method, consecutive corrector steps may be used to correct pressure and
velocity, the momentum equation that is satisfied at the (A+l)-th steps is

DDVkM -BDVk +VpM =/ (58)

thus

F*+1 = D0'(B0 Vk + /)-Do'V+l = V ~ Dn'V
+l (59>

where V = D„'(B0 Vk + /) • Note that k = 0 represents the predictor step, i.e. V° - V'.

Substituting (59) into the continuity equation V • PA+I =0 yields

V(Dn'V
+') = V^ (60)

23

User's Guide

This section provides information for users to help with running any of the updates
developed specifically as a part of NavyFOAM V1.0. In addition, there is a supplement to the
original OpenFOAM User's Guide contained in Appendix A that could be useful to readers. For
more detailed information on the OpenFOAM code and settings consult the OpenFOAM User's
Guide: http://foam.sourceforge.net/doc/Guides-a4/UserGuide.pdf. In addition, to aid users
several utilities have been developed to aid in post-processing NavyFOAM results, which are
described in Appendix B. Finally, tutorials have been developed that aid a user in running the
codes which include: a lid driven cavity problem, a fully submerged axisymmetric body and the
Wigley hull with free surface in Appendices C, D and E, respectively. It is recommended that
new user's go through the tutorials to learn the preferred settings to use with the solvers.

Gradient Schemes

Navy Least Squares Gradient Schemes

The gradient scheme is specified by a sub-dictionary entry gradSchemes in the system
finite volume dictionary file fvSchemes. Users may refer to the OpenFOAM User Guide Ver. 1.5
Section 4.4.3 on page U-l 10 for more details about this sub-dictionary. Figure 21 illustrates an
abbreviated example. The default gradient scheme is the one using Gauss theorem with the face-
center value calculated by linear interpolation. The scheme used in calculating the gradient of
pressure is NavyLeastSquares where the gradient is calculated in a least squares sense, more
details regarding the NavyLeastSquares gradient scheme can be found in the Technical
Description section.

Dictionary file:

$(CASE_DIR)/system/fvSchemes

Sub-dictionary:

gradSchemes

//- default scheme

default Gauss linear;

//- gradient scheme for pressure p

grad(p) NavyLeastSquares;

Figure 21. Example of gradSchemes sub-dictionary

24

Interpolation Schemes

Cell-based Surface Interpolation Schemes

reconCentral Surface Interpolation Scheme The reconCentral surface interpolation
scheme calculates the face-center value of <j> using both the value and the gradient of <f> at the
center of the owner and neighbor cells. The following example in Figure 22 shows how to
specify the interpolation schemes in the sub-dictionary entry interpolationSchemes of the
system finite volume dictionary file fvSchemes. Users may refer to OpenFOAM User Guide Ver.
1.5 Section 4.4.1 on page U-108 for more details about this sub-dictionary. The default scheme is
linear interpolation, where the face-center value is calculated as a weighted average of the value
at the center of the owner and neighbor cells. The weighting factors are based on inverse
distance. The reconCentral scheme is used to calculate the face-center value of U.

Dictionary file:

$(CASE DIR)/system/fvSchemes

Sub-dictionary:

interpolationSchemes

I
//- default scheme is linear interpolation

default linear;

//- surface interpolation of U

interpolate(U) reconCentral;

Figure 22. Example of interpolationSchemes sub-dictionary

reconCentralDC Surface Interpolation Scheme The reconCentral is almost a second-
order interpolation scheme. Besides calculating the surface interpolation at the face-center, it
may also be used to improve the accuracy in discretizing the convection term in the momentum
equation using deferred correction. The following example in Figure 23 shows the sub-dictionary
divSchemes in the finite volume system file fvSchemes. Users may refer to OpenFOAM User
Guide Ver. 1.5 Section 4.4.5 on page U-lll for more details about this sub-dictionary. The
convection term is integrated using the Gauss theorem and the face-center velocity u in the
convection term takes the Upwind Deferred Correction (UPDC) form using the reconCentral
scheme to calculate the higher-order correction. More details regarding UPDC can be found in
the Technical Description Section.

25

Dictionary file:

$(CASE DIR) /system/fvSchemes

Sub-dictionary:

divSchernes

//- convection term in momentum equation

div(phi, U) Gauss reconCentralDC;

Figure 23. Example of divSchemes sub-dictionary

Node-based Surface Interpolation Schemes

reconPLWA Surface Interpolation Scheme The reconPLWA surface interpolation
scheme calculates the face-center value as an average of the nodal values on the face. The nodal
value is calculated from cell-center values using a volume-to-point interpolation scheme based
on Pseudo-Laplacian-Weighted-Averaging (PLWA). More details of PLWA can be found in the
Technical Description. The following example in Figure 24 shows the sub-dictionary entry
interpolationSchemes in the system finite volume dictionary file fvSchemes. Users may
refer to OpenFOAM User Guide Ver. 1.5 Section 4.4.1 on page U-I08 for more details about this
sub-dictionary. The default interpolation scheme is linear. The next line of the dictionary shows
that the reconPLWA scheme is used to calculate the face-center value of U.

Dictionary file:

$(CASE DIR)/system/fvSchemes

Sub-dictionary:

interpolationSchemes

I
//- default scheme is linear interpolation

default linear;

//- surface interpolation of U

interpolate(U) reconPLWA;

Figure 24. Example of interpolationSchemes sub-dictionary

reconlDWA Surface Interpolation Scheme The reconlDWA surface interpolation
scheme calculates the face-center value as an average of the nodal value on the face. The nodal

26

value is calculated from cell-center values using a volume-to-point interpolation scheme based
on Inverse-Distance-Weighted-Averaging (IDWA). More details of IDWA can be found in the
Technical Description. The following example in Figure 25 shows the sub-dictionary entry
interpolationSchemes in the system finite volume dictionary file fvSchemes. Users may
refer to OpenFOAM User Guide Ver. 1.5 Section 4.4.1 on page U-108 for more details about this
sub-dictionary. The default interpolation scheme is linear. The reconlDWA scheme is used to
calculate the face-center value of u.

Dictionary file:

$(CASE DIR)/system/fvSchemes

Sub-dictionary:

interpolationSchemes

I
//- default scheme is linear interpolation

default linear;

//- surface interpolation of U

interpolate(U) reconlDWA;

}

Figure 25. Example of interpolationSchemes sub-dictionary

Convection Schemes

Convection Boundedness Criterion (CBC) Schemes

The following NVD {normalized variable diagram) based CBC schemes are particularly
useful in capturing interfaces between two fluids, e.g. air and water, in the two-phase flow solver
of NavyFOAM. More details of CBC schemes can be found in the Technical Description.

Compressive Interface Capturing Scheme for Arbitrary Meshes (CICSAM) The
following example in Figure 26 shows the sub-dictionary entry divSchemes of the system finite
volume dictionary file fvSchemes that specifies the divergence schemes for the convection term
in the transport equation of volume fraction (gamma). In this example the convection term is
integrated using the Gauss theorem and the CICSAM scheme is used to calculate the face-center
value of gamma. Users may refer to OpenFOAM User Guide Ver. 1.5 Section 4.4.5 on page U-
111 for more details about this sub-dictionary.

27

Dictionary file:

$(CASE_DIR)/system/fvSchemes

Sub-dictionary:

di vSchemes

(
//- convection term in gamma equation

div(phi,gamma) Gauss CICSAM;

)

Figure 26. Example of di vSchemes sub-dictionary

High Resolution Interface Capturing Scheme (HRIC) The following example in
Figure 27 shows the sub-dictionary entry di vSchemes of the system finite volume dictionary
file fvSchemes that specifies the divergence schemes for the convection term in the transport
equation of volume fraction (gamma). In this example, the convection term is integrated using
the Gauss theorem and the HRIC scheme is used to calculate the face-center value of gamma.
Users may refer to OpenFOAM User Guide Ver. 1.5 Section 4.4.5 on page U-lll for more
details about this sub-dictionary.

Dictionary file:

$(CASE DIR)/system/fvSchemes

Sub-dictionary:

divSchemes

I

//- convection term in gamma equation

div(phi,gamma) Gauss HRIC;

)

Figure 27. Example of di vSchemes sub-dictionary

Modified HRIC (MHRIC) The following example in Figure 28 shows the sub-dictionary
entry di vSchemes of the system finite volume dictionary file fvSchemes that specifies the
divergence schemes for the convection term in the transport equation of volume fraction
(gamma). In this example, the convection term is integrated using the Gauss theorem and the
MHRIC scheme is used to calculate the face-center value of gamma. Users may refer to
OpenFOAM User Guide Ver. 1.5 Section 4.4.5 on page U-lll for more details about this sub-
dictionary.

28

Dictionary file:

$(CASE DIR)/system/fvSchemes

Sub-dictionary:

divSchemes

//- convection term in gamma equation

div(phi,gamma) Gauss MHRIC;

Figure 28. Example of divSchemes sub-dictionary

Inter-Gamma Scheme (interGamma) The following example in Figure 29 shows the
sub-dictionary entry divSchemes of the system finite volume dictionary file fvSchemes that
specifies the divergence schemes for the convection term in the transport equation of volume
fraction (gamma). In this example, the convection term is integrated using the Gauss theorem
and the interGamma scheme is used to calculate the face-center value of gamma. Users may
refer to OpenFOAM User Guide Ver. 1.5 Section 4.4.5 on page U-l 11 for more details about this
sub-dictionary.

Dictionary file:

$(CASE DIR)/system/fvSchemes

Sub-dictionary:

divSchemes

<

//- convection term in gamma equation

div(phi,gamma) Gauss interGamma;

}

Figure 29. Example of divSchemes sub-dictionary

Modified inter-Gamma Scheme (interGammaM) The following example in Figure 30
shows the sub-dictionary entry divSchemes of the system finite volume dictionary file
fvSchemes that specifies the divergence schemes for the convection term in the transport
equation of volume fraction (gamma). In this example, the convection term is integrated using
the Gauss theorem and the interGammaM scheme is used to calculate the face-center value of
gamma. Users may refer to OpenFOAM User Guide Ver. 1.5 Section 4.4.5 on page U-l 11 for
more details about this sub-dictionary.

29

Dictionary file:

$(CASE DIR) /system/fvSchemes

Sub-dictionary:

divSchemes

(

//- convection term in gamma equation

div(phi,gamma) Gauss interGammaM;

}

Figure 30. Example of divSchemes sub-dictionary

Modified Inter-Gamma Scheme (interGammaMD) The following example in Figure
31 shows the sub-dictionary entry divSchemes of the system finite volume dictionary file
fvSchemes that specifies the divergence schemes for the convection term in the transport
equation of volume fraction (gamma). In this example, the convection term is integrated using
the Gauss theorem and the interGammaMD scheme is used to calculate the face-center value of
gamma. Users may refer to OpenFOAM User Guide Ver. 1.5 Section 4.4.5 on page U-l 11 for
more details about this sub-dictionary.

Dictionary file:

$(CASE DIR)/system/fvSchemes

Sub-dictionary:

divSchemes

I
//- convection term in gamma equation

div(phi,gamma) Gauss interGammaMD;

I

Figure 31. Example of divSchemes sub-dictionary

30

Example Results

Results are demonstrated for a fully submerged axisymmetric body, Body-1, the
KVLCC2 tanker without a free surface using the double body approximation, DTMB Model
5415 with both fixed sinkage and trim as well as dynamic sinkage and trim and the Joint High
Speed Sealift (JHSS) concept surface ship with and without waterjet propulsion.

Body-1

This section involves using NavyFOAM's steady, incompressible Reynolds Averaged
Navier-Stokes (RANS) solver for a 3-D body-of-revolution referred to as Body-l. The RANS
equations are solved using NavyFOAM's k-omega SST turbulence model. Only half the body is
solved, as symmetry is assumed, and the domain is non-dimensionalized by length. The
Reynolds number (Re) based upon the body length is 6.6 million. The boundary conditions used
for these computations are:

• Defined fixed turbulent quantities (k, omega, nuTilda) and velocity (U) at inlet
• Defined pressure (p) at outlet
• Zero gradient for all quantities at farfield boundaries
• nuTilda = 0, k ~ 0, and omega set to zero gradient at the walls

A side view of the ONR Body l geometry can be seen below in Figure 32.

Figure 32. Body-1 geometry

Computations were done on unstructured meshes that contain tetrahedral (in the flow
field) and prism (in the boundary layer) elements. Grids for these computations typically
contained approximately 2 million cells total. The left of Figure 33 shows an unstructured
surface mesh on the body and the symmetry plane, and the right side of Figure 33 shows a
surface mesh with a span-wise cross sectional cut of the volume mesh at the midbody.

31

Figure 33. Surface mesh on the body and symmetry plane (left) and surface mesh with volume
mesh cross cut (right)

The computational domain is split into many domains to allow the computations to be run
in parallel. The domain is split using the METIS domain decomposition method. Typical steady
state run times for this geometry are 3-5 hours depending on the number of domain partitions.
Steady state convergence is assumed when the forces (pressure and viscous) on the body change
by a negligible amount from one iteration to the next. Figure 34 shows results from NavyFOAM
computations.

Figure 34. Axial velocity (Ux) contours on the symmetry plane and pressure (Press) contours on
the hull

One can notice that the stagnation point is qualitatively predicted well at the nose of the
body. The velocity slows to zero and the pressure on the body is a maximum at the nose. While
the drop in pressure associated with the acceleration of the fluid around the shoulder of the bow
is also predicted correctly. Computations also show the flow remaining attached along the body
leaving a wake after the stern.

Figure 35 shows some of the quantitative results from the NavyFOAM computations
compared to experimental measurements.

32

NavyFOAM
ExpD»U

01 02 03 0 4 0 5 06 07 08 09

X/L

Figure 35. Skin friction coefficient (Q) and Pressure coefficient (Cp) plotted along the length of
the body

In Figure 35 there is a slight disagreement in predicted and measured Q at the tail of the
body, but the trends are matched well. The NavyFOAM Cp predictions match experimental
measurements well along the body.

Figure 36 below shows comparisons of computed and measured boundary layer profiles
at various locations along the body.

N«vy*OAM
CipOM

3fl

as
A E-pD«ta

M

i 3 •

t -

0 9

" Oi 04 at Oft •
u.'U . o. U .

Figure 36. Axial velocity boundary layer plots at x/L = 0.755 (left), x/L = 0.846 (middle), x/L =
0.934 (right)

The axial velocities are non-dimensionalized by the free stream velocity and boundary
layer lengths are non-dimensionalized by the radius. NavyFOAM computed boundary layer
velocity profiles match experimental measurements very well at various locations along the
body.

In conclusion, this effort shows that NavyFOAM has the capability to successfully
predict quantitative and qualitative characteristics for a body-of-revolution, as demonstrated on
the Body-1. The RANS computations were carried out successfully on multiple processors on
unstructured meshes. Results for non-body-of-revolution hull forms can be found in Delaney et
al.'9.

33

KVLCC2

The K.VLCC2 is a tanker used for code validation by many organizations and as a part of
several international workshops. The stern of the K.VLCC2 with predicted streamlines is shown
in Figure 37, flow is from left to right.

Figure 37. Stern flow of the KVLCC2

We ran sRansFOAM for this double-body flow case in which the free surface is replaced
by a symmetry plane. We deliberately chose to use two unstructured meshes to evaluate spatial
accuracy of the predictions. One of them, shown at the left of Figure 38, is a hybrid
unstructured mesh generated using SolidMesh developed at the SimCenter of the Mississippi
State University. The mesh consists of prisms with triangular bases near the hull surface and
tetrahedral in the rest of the domain. The total cell count is approximately 8 million. The other
mesh, shown at the right of Figure 38, is a hexahedron-dominant unstructured mesh generated
using the snappyHexMesh utility available in the standard OpenFOAM package. With the latter,
we put in three-levels of embedded fine-mesh blocks to better resolve the near-body region. Its
total number of elements is a little over 3 million. The near-wall mesh resolutions for both
meshes are such that the distance from the wall is larger than 40 wall units (y+ > 40) over a large
portion of the hull surface. So, the wall function approach was employed to provide the
boundary conditions for the momentum equations and the turbulence equations. Wilcox's k-co
model (Wilcox3) was used for turbulence closure for its good track record for this class of flows
(Kim and Rhee20).

Figure 38. Grids used for the KVLCC2

The contours of mean axial velocity (U) at the propeller plane (x/L = 0.9823) are shown
in Figure 39 for the two meshes. As can be seen, the characteristic shape of the t/-contours

34

("hook"-shaped or "rabbit's" ear-like) is closely captured by both meshes. The contours of
turbulent kinetic energy at the same plane are depicted in Figure 40. The region of high
turbulent kinetic energy, which originates from the upstream boundary layer and overlaps with
the region of low axial velocity depicted in Figure 39 is reproduced reasonably well by the
computations, although their peak values are somewhat under predicted. The overall prediction
accuracy shown here with the unstructured meshes used in this study is remarkably good. More
details on these calculations can be found in Kim et al."1.

Figure 39. Contour of axial velocity at x/L = 0.9825 predicted on the two meshes. Top hybrid
(prism + tet) unstructured mesh; Bottom - snappyHexMesh

?
*

^^^^^H WB 9014 •
• am • 9017 •
• • * 001 •
• '. 10H9 •

'"*•• inn
41.(16 -MM *re

HNavyFOAMl
Hsnappytjoxl

I 58 mu m». Bi
Yl*P

Figure 40. Contour of turbulent kinetic energy at x/L = 0.9825 predicted on the two meshes. Top
- hybrid unstructured (prism + tet); Bottom - snappyHexMesh

DTMB Model 5415

Fixed Sinkage and Trim

These computations were carried out using ransFSFOAM for a single Froude number of 0.28
using three different isotropic eddy-viscosity based turbulence models including the realizable k-
£(Shih et al.:2), SST k-co (Menter) and Wilcox's k-co (Wilcox) models. The computational
meshes were generated using GridPro (www.gridpro.com). a commercial meshing package well
known for high-quality hexahedral meshes. Great care was taken to ensure that such salient
features as the hull-generated waves, the boundary layer along the entire hull, and the near-wake
are adequately resolved. To check grid-dependency of the solutions, three systematically refined
hexahedral meshes were used with 13 million (Fine), 6 million (medium), and 3 million (coarse)
elements. One of the grids used is shown in Figure 41.

35

.

Figure 41. Grid for DTMB Model 5415

Although a time-marching, transient solution algorithm is employed in ransFSFOAM,
our goal was to obtain steady-state solutions. An iterative implicit solution algorithm employed
in ransFSFOAM greatly accelerated solution convergence by allowing us to use a fairly large
time-step size. The transient computations were continued for sufficiently long periods of time
until not only the global quantities, such as the forces and moments acting on the hull, but also
other flow features like wave elevation, hull boundary layer and wake, all reach steady states.

Figure 42 illustrates the wave pattern predicted with the SST k-fo model result on the 6
million cell mesh, along with the measured one. Figure 43 shows the wave elevations along the
three longitudinal cuts (y/L = 0.082, 0.172, 0.301) obtained using the SST k-ca model on all three
meshes. First of all, the results indicate grid-convergence of the predictions, all of which are in
excellent agreement with the data. The results obtained using three different turbulence models
on the medium (6 million cell) mesh are shown in Figure 44. The differences among the three
results are measurable yet small. The realizable k-s model results appreciably deviate from the
other two k-co model results.

0 4

rTiwri
/•

W
C 2

/
j^

*%'
J °

BLVJ*^T~~~~-~^ >•
- H^^^^flfe^

-0.2 ^

[EFDHngQeTaMgOOTJ^^^^ 3

OS 0 75

x/L„

Figure 42. Contour of wave elevation for DTMB 5415 with SST k-a> model result on the 6
million cell mesh

36

1

13 Million
6 Million D miiiiuii ~

3 Million f\ /\

7, - 1

»"•»»

Figure 43. Wave elevations along three longitudinal cuts obtained using SST k-o> model on three
different meshes: top - y/L = 0.082; middle - y/L = 0.172; bottom - y/L = 0.301

4

man.
SST
RKE

-0\/W^^y
«^-. «A~

">"L-'

Figure 44. Wave elevations along three longitudinal cuts obtained using three different
turbulence models on the 6 million cell mesh : top - y/L = 0.082; middle - y/L = 0.172; bottom

-y/L = 0.301

Figure 45 shows the contours of axial velocity at x/L = 0.935 obtained using the three
turbulence models on the 6 million cell mesh. All three turbulence models capture the gross
feature of the boundary layer - the distorted velocity contours reflecting thickening of the stern
boundary layer due to convergence of wall-limiting streamlines, and also the ensuing vortex
sheet, the degree of which varies model to model. The prediction by Wilcox's k-co model (the
bottom-right figure) seems to be the closest to the measurement.

37

c)

Figure 45. Contour of axial velocity (U) at x/L = 0.935 obtained on 6 million cells, a) measured;
b) SST k-o); c) realizable k-s; d) Wilcox's k-ca

Dynamic Sinkage and Trim

The dynamic sinkage and trim computations were carried out using ransFSDyMFOAM on a
1.5 million-cell hexahedral mesh for three different Reynolds numbers. Re = 5.96 * 10\ 1.19 x

7 7
10 , 1.75 x 10 ' and the corresponding Froude numbers, Fn = 0.138, 0.28, 0.41, respectively.
Unsteady RANSE was solved along with the equations of 2-DOF (heave and pitch) ship motion.
The transient runs were continued until the resistance, the trim angle, and the sinkage reach
statistically steady states. The time-averaged resistance, trim, and sinkage are shown in Figure
46 along with the experimental data. Despite the relatively coarse mesh used in this study, the
predictions are in fair agreement with the measurements. More details on these calculations can
be found in Kim et al."1.

38

0.010

0.008

0.006

0.004

0002

0000

experiment
NavyFOAM o

§

a)
0.0 0.1 0.2 0.3 0.4

Froude number b)

12 ,
experiment

1.0 NavyFOAM

0.8

0.6

0.4

0.2

00

-0.2
0.1 0.2 0.3

Froude number

0 4

-1
0) ft 0.002

!_•

0.004

0.006

experiment
NavyFOAM

°

o

c)
0.1 0.2 0.3

Froude number

o

0.4

Figure 46. Prediction of a) resistance, b) trim and c) sinkage for the DTMB 5415 model

Joint High Speed Sealift (JHSS)

This section involves using NavyFOAM's multiphase, incompressible Reynolds
Averaged Navier-Stokes (RANS) solver for the Joint High Speed Sealift (JHSS) concept surface
ship. The JHSS concept vessel is a challenging computational case because of its complex
geometry and free surface interactions with both the bow and waterjets. The RANS equations are
solved using NavyFOAM's k-omega SST turbulence model. Only half the body is solved, as
symmetry is assumed, and the domain is non-dimensionalized by ship length. The concept vessel
is scaled from full scale by constant Froude number to a model scale. The Froude number (Ft)
ranges from -0.23-0.40. The air and water phases are accounted for using NavyFOAM's implicit
Volume-of-Fluid (VOF) capability. The boundary conditions used for these computations are:

• Defined fixed turbulent quantities (k, omega, nuTilda) and velocity (U), and calm
water volume fraction conditions (gamma) at inlet

• Defined pressure (p) at outlet
• Zero gradient for all quantities, and calm water volume fraction conditions

(gamma) at far field boundaries
• nuTilda = 0, k - 0, and omega set to zero gradient at the walls

Side and stern views of the JHSS geometry can be seen below in Figure 47. The left side
of Figure 47 shows the profile of the concept vessel including the gooseneck bow, which has

39

very little clearance from the free surface. The right side of the figure shows the waterjets from
the stern. Both the gooseneck bow and the waterjet inlets/nozzles are complex geometry features
that require special care/treatment in the meshing process.

Figure 47. JHSS concept vessel geometry

Unpowered Bare Hull Computations

Initially, computations are done with the bare hull (no waterjets included in the model) to
test NavyFOAM's multiphase sinkage and trim capability. Later in the report powered
computations involving the waterjets will be discussed. Figure 48 shows the structured surface
mesh on the bare hull used for these calculations. The surface mesh on the JHSS displays mesh
refinement around the free surface to capture free surface disturbances. The meshes used for this
study were typically on the order of 2-4M cells total.

Figure 48. JHSS structured surface mesh on the bare hull

The computational domain is split into many domains to allow the computations to be run
in parallel. The domain is split using the METIS domain decomposition method. Typical steady
state run times for this geometry are 48-72 hours depending on the number of domain partitions.
Steady state convergence is assumed when the forces (pressure and viscous) on the body and
sinkage and trim values change by a negligible amount from one iteration to the next. Figure 49
shows wave profile results from NavyFOAM computations.

40

Figure 49. JHSS wave profile on the hull for various NavyFOAM meshes and experimental
measurements, scaled up to full scale (full scale LBP -950 ft)

Figure 49 shows results from a NavyFOAM grid study, and experimental measurements
for a slightly different JHSS model. A grid resolution study and a blocking study resulted in 3
different meshes (OF-A, OF-B, and Ref OF-A). The grid study showed that NavyFOAM gave
relatively consistent results for all three meshes, thus the grid scheme shown in Figure 48 is used
for all results in this report. Figure 49 also shows that the NavyFOAM predicted wave profiles
match experimental measurements well. However, one can see that the bow wave is slightly
under predicted. This is most likely due to a lack of grid resolution in the bow area and/or need
for a sharper volume fraction discretization scheme. Nevertheless the differences are relatively
small considering the ship length is 950 feet and the bow wave is under predicted by ~1 foot.

Figure 50 shows some axial velocity boundary layer profiles upstream of where the
waterjet inlet would be located (inboard on the left and outboard on the right). NavyFOAM
results (OF) are compared to both experimental measurements (Exp) and previous double body
calculations with another RANS solver (TENASI). The NavyFOAM boundary layers match
experimental measurements very well. These boundary layer plots are important because
powering predictions ultimately depend on (amongst other things) accurate prediction of the
flowfield upstream of the waterjet inlets.

41

3
5
in

2
B
O

1
2

B

I
2
B
Q

I
B

u. U„ u. u.

Figure 50. Inboard (left) and outboard (right) axial velocity boundary layer plots for
NavyFOAM free surface computations (OF), TENAS1 double-body computations (TEN), and

experimental measurements (Exp)

Figure 51 shows sinkage and trim values over the course of a NavyFOAM run for three
Froude number cases. Each plot shows a consistent pattern for both sinkage and trim for all run
times, thus showing that the multiphase solver is relatively robust, and wild swings in sinkage
and trim over the course of a run are not predicted.

«

.1_J—i 1 i i 1_

I

MknlX^JlCM* 4> tot *»« Hu» < «M

I
;WVAy\/\AA^

•

!

y<fi%M<w^

Figure 51. Sinkage and trim run time values plotted for three different Froude numbers

Figure 52 shows free surface plots for the bare hull configuration under fixed (to the
design point) and free sinkage and trim cases. These plots show that the predicted wave profiles
for the free to sink and trim case are similar to the profiles predicted under fixed conditions.

Figure 52. Fixed and free sinkage and trim NavyFOAM free surface plots colored by wave
elevation

42

Figure 53 shows total resistance predictions on the body over various Froude numbers for
both NavyFOAM and experimental measurements. One can see that NavyFOAM predicts drag
on the body extremely well for all Froude numbers as compared to experiment. These successful
predictions are important because resistance prediction is a key to powering predictions.

250

- 200

| 160

I 100

1 »

-

i

—a— NwyFotm s

i i • i

2 0 25 03 0 35 0 4 0 45
Froude Number

Figure 53. JHSS resistance for various Froude numbers predicted by experiment and
NavyFOAM

Figure 54 shows sinkage (top) and trim (bottom) comparisons to experimental
measurements for various Froude numbers. NavyFOAM sinkage predictions match experimental
measurements very well, with a slight discrepancy at the highest Froude number. NavyFOAM
trim predictions also match experimental measurements well over the range of Froude numbers,
with a slight discrepancy at the two highest Froude numbers. Although the trim differences may
look large they only differ by fractions of a degree. In both the sinkage and trim cases the overall
trends are predicted correctly.

-

. . i . , . i .

- Lxp Mass
NavyFoam E

— -001

1
•g -0.02
n

 •—

i . i . . . 1
2 0 25 03 035 04 04

Froude Number

02

0 1
a-

I 0

-0.2

or

ExpMeaa
NavyFoam

irsr T5 53T
Frounde Number

~oX X4J

Figure 54. JHSS bare hull sinkage (top) and trim (bottom) predictions for various Froude
numbers

43

Powered Computations with Waterjets

The rest of this section will discuss powered JHSS conditions. The powering model
described below is for the JHSS concept vessel fixed at design sinkage and trim. The waterjet
pumps are simulated by a body force model in NavyFOAM, which imposes a pressure jump over
a volume region as specified by the user. Figure 55 shows the surface mesh on the waterjet
region of the JHSS. The complexity of the waterjet inlet geometry led to the desire to use
unstructured elements (tetrahedral and prism) to grid around the waterjet inlets. NavyFOAM\s
Generalized Grid Interface (GGI) capability allows us to combine the structured mesh used for
the bare hull computations with an unstructured grid around the waterjet inlets. Figure 55 shows
the different structured and unstructured surfaces on the hull.

Figure 55. Surface mesh at the stern showing GGI region around waterjets

Powered computations are carried out similar to the process described above for the bare
hull case (domain decomposition, steady state criterion, etc.). One additional steady state
criterion is added for the powering case: the resistance on the body must match an artificial tow
force (to match experimental tow tank results) and the thrust in the waterjets provided by the
body force model to simulate self propulsion. Figure 56 shows axial velocity contours through an
inboard waterjet inlet. The right side of Figure 56 shows the volume mesh at this cross cut. One
can see that the flow remains smooth through the GGI interfaces, thus NavyFOAM*s GGI
capability successfully handles these complex flow interfaces.

Figure 56. Axial velocity contours through the GGI modeled waterjet without (left) and with
(right) volume mesh overlayed

Figure 57 shows axial velocity (Vx) contours predicted by NavyFOAM for the inboard
(right) and outboard (left) waterjets just upstream of where the waterjet pumps (or body force
model in NavyFOAM's case) would reside. The qualitative look of the flowfield upstream of the
pump matches previously validated TENASI computations very well. It is important to
accurately capture the flow upstream from the pump as it is a key factor in final power (DHP)
predictions. NavyFOAM predicted self propulsion at a thrust of 163 N, while experimental tests
resulted in a self propulsion point of 153 N. There is a slight discrepancy between experiment

44

and NavyFOAM self propulsion points, but they are still quite close considering the different
methods (tow tank experiments vs. computations) used in obtaining the results.

Figure 57. Axial velocity contours inside the waterjets

Figure 58 shows the free surface colored by wave height for the powered JHSS as
predicted by NavyFOAM. The wave pattern is similar to that found in the bare hull case except
in the stern region, as it should be. The rooster-tail at the stern is captured correctly, and the
affect of the flow exiting the waterjets can be seen.

Figure 58. Powered JHSS free surface plot colored by wave elevation

Figure 59 shows a photograph of the flow exiting the waterjets during tow tank tests
compared to NavyFOAM's post-processed results. One can see that the NavyFOAM
computations predict the complex physics taking place at the stern very well. The interaction
between the rooster-tail shooting out from underneath the stern and the flow exiting the waterjets
is captured very well in NavyFOAM.

45

Figure 59. Experimental photograph (left) and NavyFOAM post-processed JHSS powered stern

In conclusion, NavyFOAM displays the capability to accurately predict complex physics
for surface ships. The JHSS concept vessel is an especially complex surface ship due to the
gooseneck bow and the waterjet inlets/powering. Initially, the hull resistance, sinkage and trim of
the bare hull case are predicted with the hull free to sink and trim. Navy FOAM results match
experimental measurements very well for various Froude numbers that take the concept vessel
through different ship attitudes. Finally, self propulsion is predicted with a body force model (in
place of the actual waterjet pumps) providing thrust that balances out the model's resistance.
NavyFOAM powering predictions match experimental measurements well.

Summary

This report provides a guide to NavyFOAM V1.0, which is based on the OpenFOAM
open source software. A brief technical description of the code is given with an emphasis on
those changes made for NavyFOAM V1.0 that differentiates it from the standard OpenFOAM
offering. More details on OpenFOAM specifically can be found in the OpenFOAM guides
referenced in this report. Complementing the technical description of NavyFOAM changes
there is a User's Guide section to help users of NavyFOAM properly implement the use of these
improvements. Results are presented for a variety of Navy relevant configurations including a
fully submerged axisymmetric body, a tanker, DTMB Model 5415 (pre-contract design for the
DDG-51) and the Joint High Speed Sealift (JHSS) concept. Results for all cases compare will
with experimental data. Results are also presented for a variety of grid types and turbulence
models providing some indication of the capabilities available with the code. Finally, several
tutorials as well as other information that is directly aimed at helping users successfully use the
code are also provided.

46

Appendix A: Supplemental User's Guide

This section is meant to supplement the original OpenFOAM User's Guide. For more
detailed information on the OpenFOAM code and settings consult the User's Guide:
http://foam.sourceforge.net/doc/Guides-a4/UserGuide.pdf.

Standard solvers that are used:

• icoFoam (transient, laminar, incompressible, single phase)
• simpleFoam (steady, RANS, incompressible, single phase)
• interFoam (transient, RANS, incompressible, multi-phase)

Files Contained in the system Directory include:

(1) controlDict

(2) decomposeParDict

(3) fVSchemes

(4) fvSolution

controlDict

Dictionary that controls run parameters and output data from the run.

Application: here you specify the solver used (i.e. simpleFoam, icoFoam, etc.). This is
not essential. Specifying the executable here doesn't seem to have any control over the run.

StartFrom: here you specify when to start the run from. Options are:

firstTime - start from the earliest time directory available

startTime start from the time specified by startTime on the next line

latestTime - start from the most recent time directory available.

startTime: enter the time to start the run from when StartFrom ? startTime; is selected.

StopAt: here you specify when to stop the application. Options are:

endTime - stop run at time specified by endTime on the next line

writeNow - stop the run at the next iteration and write out the last time step

noWriteNow stop the run at the next iteration and don't write time info at last time
step

nextWrite - stop the run at the next scheduled write time specified by writeControl

endTime: time when run will stop. Only valid when stopAt ? endtime; is selected

deltaT: here you specify the run time step. This is typically / for steady runs and for
unsteady runs this is superceded by maxCo, which is discussed below.

WriteControl: here you specify when/how to output information. Options are:

timeStep writes data every writelnterval time steps

runTime - writes data every writelnterval seconds of run time

47

adjustableRunTime - this is the same as runTime, except it will adjust the time steps to
coincide with the writelnterval

cpuTime - writes data every writelnterval seconds of CPU time

clockTime - writes data every writelnterval seconds of real time

writelnterval: scalar data that specifies time output from writeControl

purgeWrite: this is an integer value that specifies how many output time directories are
stored. When the max number of purgeWrite directories have been written, the newest time data
will over write the oldest time directory. A value of 0 means that no time data will be
overwritten.

WriteFormat: here you specify the format of the output data. Options are:

ascii - ASCII data with the amount of significant figures specified by writePrecision

binary Binary data

ascii is typically used

writePrecision: number of significant figures ASCII writeFormat is written out to.

WriteCompression: here you specify the compression (if any) of the output files. Options
are:

uncompressed - No data compression

compressed - gzip compression

compressed has typically been used

timeFormat: here you specify the format for the time directory names. Options are:

fixed - all time directories are written in fixed format (i.e. 123.456)

scientific all time directories are labeled in scientific format (i.e. 1.23456e+03)

general - specifies scientific format of exponent is less than -4, otherwise fixed

general has typically been used

timePrecision: here you specify the number of significant figures for timeFormat time
directory labels. 6 is the default and is typically used.

GraphFormat: here you specify the graph data written by an application. Options are:

raw - data in ASCII format in columns

gnuplot data in gnuplot format

xmgr - data in Grace/xmgr format

/plot - data in j Plot format

typicall raw is specified, but this depends on the user preference.

RunTimeModifiable: here you specify yes to have the directories (including controlDict)
read at the beginning of each time step, or no to have the run proceed without rereading
directories. This is typically set to yes, and should remain so to avoid confusion.

48

AdjnstTimeStep: select yes for an adjustable time step (whose size is determined by
mcixCo and maxDeltaT), or no for a constant time step as specified by deltaT.

MaxCo: This adjusts the time step to achieve the specified maximum CFL number. This
value is typically low 0(1) at the beginning of a run, and ramped up 0(10) once the solution
becomes more stable.

MaxDeltaT: this value is a limit to the maximum time step achievable, when a maxCo is
specified.

** At the bottom of the controlDict (or anywhere within) you can specify additional
libraries or functions to be loaded at run-time. Turbulence model and dynamic mesh motion libs,
and force functions are common examples of what have been used.

decomposeParDict

Dictionary that contains all input information on domain decomposition for parallel
processing runs.

Subdictionary: numberOfDomains

Here you specify the number of partitions you want your grid to get split up into.

Subdictionary: method

Here you specify the method of domain decomposition. Options are:

simple domain is decomposed into volumes that are similar in all coordinate
directions.

hierarchical - user can specify the order of direction for simple decomposition.

scotch - attempts to minimize the number of geometric boundaries.

metis - similar to scotch, but is not free for commercial use, it will eventually be
discontinued.

manual - user manually specifies decomposition of each cell to a processor.

metis has traditionally been used during testing, occasionally simple decomposition is
used. User should use metis except for special circumstances.

Subdictionary: simpleCoeffs

Here you specify n number of processors in each direction to decompose domain, and
cell skew factor (delta) for decomposition. This is only necessary for simple domain
decomposition.

Subdictionary: hierarchicalCoeffs

Here you specify n number of processors in each direction to decompose domain, and
cell skew factor (delta), and the order of directions (i.e. xyz or zyx) for decomposition. This is
only necessary for hierarchical domain decomposition.

Subditionary: scotchCoeffs

Here you specify the weighting factors (processor^'eights) for each individual processor.
The numbers for each processor are normalized, so any values can be accepted, no matter the

49

sum. You can also specify the strategy, but it is not clear what this value means. This is only
necessary for scotch domain decomposition.

Subdictionary: metisCoeffs

Here you specify processor Weights, as described above in scotchCoeffs. This is only
necessary if you specify metis decomposition.

Subdictionary: manualCoeffs

Here you specify the name of a data fde that contains processor allocations for each cell.
This is only necessary if you specify manual decomposition.

Subdictionary: distributed

This is an optional subdictionary, where you state yes or no, whether there is geometry
data in any other directories that needs to be decomposed with the current directory.

Subdictionary: roots

If you chose yes to distributed, here you list the address(es) to additional directories.

fvSchemes

Dictionary that contains numerical scheme input: interpolation methods, temporal and
spatial discretization information

Subditctionary: ddtSchemes

This subdictionary contains first time derivative discretization method

Eider (lsl order implicit) is the only method that has been consistently used

Subdictionary: gradSchemes

This subdictionary contains discretization information for the gradient terms

Gauss linear and leastSquares. The Gauss linear method has been used most frequently,
yielding consistent results. The leastSquares method is believed to be more accurate when
calculating the gradient on non-uniform meshes, but bugs were encountered early in the V & V
process. Improvement of the leastSquares gradient method has been an ongoing effort.

Limiting is available (i.e. Gauss linear limited); however, this was proven to negatively
affect the solution during the V & V process.

Subdictionary: divSchemes

This subdictionary contains discretization information on the divergence terms.

Div(phi,U) is commonly refered to as the convection term in the momentum equation.
Typically, a 2n order upwind is used for this term,Gauss linearUpwind cellLimited Gauss linear
1.0.

Turbulent quantities (nuTilda, k, omega, epsilon, etc.) are usually solved lNl order upwind
(Gauss upwind), but it may be necessary to solve the 2nd order upwind (Gauss linearUpwind
cellLimited Gauss linear 1.0).

Multiphase gamma terms...

50

*Note: There will be an error message if the term div((nuEff*dev(grad(U). T()))) is left
out, or if a divScheme is applied to this term. Instead this term needs to be included with a
gradient scheme discretization. Gauss linear is the most common scheme used with this term.

Subdictionary: laplacianSchemes

This subdictionary contains discretization information for the laplacian terms.

Gauss linear corrected has been the standard scheme used. Limiting can be used {Gauss
linear limited 0.0 = uncorrected and Gauss linear limited 1.0 = corrected). The correction refers
to treatment of non-orthogonal terms. An uncorrected solution (Gauss linear limited X.X with
X.X< 1 will not converge to the same, more accurate, solution as Gauss linear corrected).

Subdictionary: interpolationSchemes

This subdictionary contains information on interpolation that is usually from cell center
to cell face.

Linear has been the standard scheme used; however, reconCentral scheme is being
developed and is believed to be more accurate for meshes with significant non-orthogonality
(unstructured meshes).

Subdictionary: snGradSchemes

This subdictionary contains information on surface normal gradient terms. This term
specifies the portion of the gradient at a cell's face that is normal to the face.

corrected has been the standard scheme used for this subdictionary and other schemes
have not been used significantly.

Subdictionary: fluxRequired

This subdictionary contains information for variables whose flux is calculated in the
application.

The flux is required for pressure (p and pd) for most calculations, because a pressure
equation is solved. Thus the default is usually set to no and the variable p ox pd is specified in
the subdictionary, so that the flux is calculated for the pressure.

fvSolution

Dictionary that contains algorithm and linear system solvers information, such as solver
settings and tolerances for convergence. The segregated solver variables and solution algorithms
will vary with choice of problem solver executable (i.e. simpleFoam and interFoam require
different settings).

solvers contains the linear system of equation algorithms and tolerances for all the
variables (OpenFoam uses a segregated solver).

The common linear solvers tested and used are conjugate gradient solvers (PCG/PBiCG)
and multi-grid solvers (GAMG/AAMG).

Many tolerance settings have been used, but common values tested have been:

P - tolerance le-10; relTol 0.01; and minlter = 1;

U, gamma, and turbulent quantities - tolerance le-07; relTol 0.0; and minlter = 1;

51

The tolerance criterion is satisfied when the residual for the linear solver reaches the
prescribed value. The relTol criterion is satisfied when the linear solver residual has dropped by
the order of magnitude specified by: 1.0/relTol (i.e. relTol = 0.01 corresponds to the residual
dropping two orders of magnitude or 10").

Note: be sure to use the minlter=l; command for all the linear solvers, as some solution
tolerances may be set such that variables will stop iterating prematurely in the solution process,
thus leading to inaccurate solutions that may look OK.

Pressure algorithms (SIMPLE and PISO) -

For simpleFoam (steady state, single phase, RANS solver) the solver variables needed are
p, U, turbulent quantities (nuTilda for SA, k and omega for SST or WKO, k and epsilon for k-
epsilon, etc.).

The pressure algorithm should be SIMPLE, which includes:

nNonOrthogonalCorrectors #; Where the # selected will determine the number of
additional pressure solver loops. For example, for a value of # = 1, the solver will iterate over the
pressure equation twice. For runs with meshes of good quality these additional loops are not
needed. However, for meshes containing a lot of skew or nonOrthogonality, values between 1
and 3 will add stability (as well as additional computational time) to the solution.

nCorrectors?

pRefCell and pRefValue must both be set or errors will occur. These values represent
what the reference pressure value (most likely free-stream) and a cell number where this value
occurs (a cell located in the free stream). All previous runs have used values of 0 for both
without problem.

For unsteady and pseudo time-marching steady solvers like interFoam and
ransNavylnterFoam

The pressure algorithm should be PISO, which includes:

nNonOrthogonalCorrectors #; ...

relaxation Factors contains the under-relaxation values for all the linear solver variables
(U,p,pd,omega,k,gamma, etc.). The relaxation factors correspond to :

0.0= Fully relaxed

0.0 < # < 1.0 = variable under-relaxation

1.0 = No relaxation

For all implicit and most explicit runs, under-relaxation should be used on all variables to
varying degrees. The pressure terms (p for simpleFoam, pd for other solvers) require more
under-relaxation than other variables and this value is usually very important to solution stability.
It is not uncommon to start a calculation out with a value of 0.1 or 0.2 and wait for the initial
solution to develop and then ramp the value up progressively to 0.3. The velocity (U) usually
starts around 0.5 and ramps up to 0.7 or 0.8 as the solution stabilizes. The turbulent quantities
and gamma usually affect the solution startup less and typical values are 0.6 and 0.7-0.8
respectively.

52

Appendix B: Utility Programs

Several programs have been written to simplify post-processing NavyFOAM output data.
Descriptions of their use are given here.

dataFunkyFieldComparison

Description

This utility reads the scalar and vector volume field from FOAM numerical solution
data files and compares them with the analytic solutions specified by a dictionary file named
funkyFieldsDict stored under directory $CASE_DIR/system. The utility will first match the field
names specified in funkyFieldsDict with those stored in the solution files and then calculate the£„

and L2 norm of the error and send the report to standard output (stdout). The error will only be
calculated if the field name is found in both funkyFieldsDict and solution files.

This utility is part of NavyFOAM.

Usage

The command line usage looks like

dataFunkyFieldComparison [-case dir] [-time time] [-latestTime]

The optional options are

-case dir: specifies the case directory;

-time time: selects the time step;

-latestTime: selects the latest time step.

Without any option, the utility will read the data files for all time steps stored under the
current case directory.

Installation

1) Create a working copy using svn checkout. The recommended local directory to
checkout the package is

NavyFOAM/applications/utilities/postProcessinq

svn checkout svn+ssh://blackwater/5700/NavyFOAM/IntegrationBranches/NavyFOAM-1.5-dev-
rev995/NavyFOAM/applications/utilities/postProcessing/dataComparison

2) Go to directory JdataCompahson/dataFunkyFieldComparison and compile the package:

wmake

The compiler may generate some warning message which can be ignored in this case.
The generated executable file dataFunkyFieldComparison can be found in a user application binary
file directory specified by $FOAM_USER_APPBIN.

Warning: To compile this utility at least version 2.1 of Bison has to be installed. Check with

53

bison -V

on the command line before trying to compile it. Go to http://www.Knu.org/software/bison' for
more information regarding Bison.

Expression Syntax

The example below shows some useful expression syntax. The most complete
documentation of the expression syntax is the source file for the Bison-grammar in the package:

ValueExpressionParser.yy
ValueExpressionL exer. II

Example

The dictionary file funkyFieldsDict used in a Taylor vortex test case is shown below:

FoamFile
{

version 2.0;
format ascii;
class dictionary;
object funkyFieldsDict;

I
• ••a***************.******************

expressions

(
TaylorVortex Velocity

1 '
field U;
expression "vector(sin(pos().x)*cos(pos().y), -cos(pos().x)*sin(pos().y). 0)*exp(-0.2*time())";

I
TaylorVortexPressure

:
field p;
expression "0.25*(cos(2.*pos().x)+cos(2.*pos().y))*pow(exp(-0.2*time()),2)";

i
I

);

The above dictionary file specifies the analytic solution of the Taylor-Green vortex
problem:

1 ,
/>(.v, vJ) = — (COS2JC + COS2>>)F"(0

4
u(x,y,t) = sin.x cosyF(t)

v(.v, y,t) = -COSJC sin yF(t)

with F(t) = e'2" and v = 0.1.

Suppose we already have the solution files at time = 1 as the latest time step stored
under $CASE_DIR/1. The command line

dataFunkyFieldComparison -latestTime

54

will yield the output shown below:

Time= 1

volScalarField: p

max error occurs at cell: 0
maxErr = 0.000409110343
rmsErr = 0.000137916310931

volVectorField: U

max error in magnitude occurs at cell: 12216
maxErr = 6.79861100733e-05
rmsErr = 2.44996079401 e-05

max error in X-component occurs at cell: 7680
maxErr = 3.4175343e-05
rmsErr = 1.44738699513e-05

max error in Y-component occurs at cell: 12217
maxErr = 6.7017086e-05
rmsErr = 2.1343033345e-05

max error in Z-component occurs at cell: 5911
maxErr = 0
rmsErr = 0

For a scalar volume field such as the pressure field, the maximum error (maxErr) and
root-mean-squares error (rmsErr) are calculated as follows:

maxErr = L„ (p" -/,„")= max (| A" - p"0, |)
IS j <N,,

rmsErr = L2(p" -p"a) = ijf-fiW "Plf

where the subscript "0" denotes the analytic solution, the superscript "n" represents the n-
th time step, and Np is the total number of cells for cell-centered finite volume method.

For a vector volume field such as the velocity field, the maxErr and rmsErr are calculated
for the vector magnitude:

maxErr = ^(|K|"-|K0|")= max(||^r-|F0jr|)

maEn = L2(\V\"-\?6n= l±.^(\V,\"-\V0J\"J

55

and for each component:

jc-component

maxErr = LJft' -«£) = max (|< -u"0j |)
IS I S\(.

rmsErr = = /,(«-- -<) =]££<"<• -o
2

^-component

maxErr

-L2(v
n-

-<) = max(|v"-
ISiS/V,. v.", 1)

rmsErr = feS« -VoV2

r-component

maxErr = M"" -<) = max (Ivv"
IS I <\r ' -<D

rmsErr = L2(w" -<)= .-]-£« - <;)
:

An optional option -patches will be added to calculate the L„ and/., norm of the error in
patch-internal-field (cells that directly connecting the patch) for specified patches.

NavyFOAMToTecplot

Description

This utility reads the scalar and vector volume and boundary patch fields from FOAM
numerical solution data files and converts them to Tecplot data files.

This utility is part of NavyFOAM.

Usage

'(hull)'

The command line usage looks like

NavyFoamToTecplot [-region name] [-case dir] [-fields fieldsList]
[-patches patchesList] [-time time] [-latestTime]

The optional options are
-region name: specifies the region name;
-case dir: specifies the case directory;
-fields fieldsList: specifies a list of fields to output, e.g. '(pi) gamma)\ or '(U)';
-patches patchesList: specifies a list of patches to output, e.g. '(inlet outlet wall)', or

-time time: selects the time step;
-latestTime: selects the latest time step.

Without any option, the utility will read the data files for all time steps stored under
the current case directory and convert the volume field to Tecplot data.

56

Installation

1) Create a working copy using svn checkout. The recommended local directory to
checkout the package is

NavyFOAM/applications/utilities/postProcessing/dataConversion

svn checkout svn+ssh://blackwater/5700/NavyFOAM/IntegrationBranches/NavyFOAM-l .5-dev-
revl745/NavyFOAM/applications/utilities/postProcessing/dataConversion

/NavyFoamToTecplot

2) Go to directory ,/dataConversion/NavyFoamToTecplot and compile the package:

wmake

The generated executable file NavyFoamToTecplot can be found in a user application
binary file directory specified by $FOAM_USER_APPBIN.

Output

The output files can be found in $CASE_DIR/TecplotData, for example

NavyFoamToTecplot -fields '(p U)' -patches '(hull)' -time 10

will generate 10.dat and hull_10.dat in $CASE_DIR/TecplotData.

NavyCellSetToTecplot

Description

This utility reads a user specified cellSet file in Vconstant/polymesh/sets/ and convert
it to Tecplot data file.

This utility is part of NavyFOAM.

Usage

The command line usage looks like

NavyCellSetToTecplot <cellSetFileName> [-region name] [-casedir]
[-patches patchesList]

The mandatory argument is
cellSetFileName: specifies the file name for the cellSet, e.g. waveDampingCells;

The optional options are

-region name: specifies the region name;

-case dir: specifies the case directory;

57

-patches patchesList: specifies a list of patches to output, e.g. '(inlet outlet wall)\ or
•(hull)';

Installation

1) Create a working copy using svn checkout. The recommended local directory to
checkout the package is

NavyFOAM/applications/utilities/postProcessing/dataConversion

svn checkout svn+ssh://blackwater/5700/NavyFOAM/IntegrationBranches/NavyFOAM-l .5-dev-
revl745/NavyFOAM/applications/utilities/postProcessing/dataConversion

/NavyCellSetToTecplot

2) Go to directory ./dataConversion/NavyCellSetToTecplot and compile the package:
i

wmake

The generated executable file NavyCellSetToTecplot can be found in a user
application binary file directory specified by $FOAM_USER_APPBIN.

Output

The output files can be found in $CASE_DIR/TecplotData, for example

NavyCellSetToTecplot waveDampingCells -patches '(hull symmetry)'

may generate waveDampingCells.dat in $CASE_DIR/TecplotData. The Tecplot data file
waveDampingCells.dat should contain the following zones:

ZONE T = volMesh
...
ZONE T = hull

ZONE T = symmetry
...
ZONE T = waveDampingCells

The first zone is the volume mesh. The next two zones are the surface mesh for the
user specified patches. The last zone is a volume mesh for the cellSet. In Tecplot, the mesh
of each zone can be plotted in different colors.

NavyFaceSetToTecplot

Description

This utility reads a user specified faceSel file in ./constant/polymesh/sets/ and converts it
to Tecplot data file.

This utility is part of NavyFOAM.

Usage

The command line usage looks like

58

NavyFaceSetToTecplot <faceSetFileName> [-region name] [-case dir]
[-patches patchesList]

The mandatory argument is

faceSetFileName: specifies the file name for the faceSet, e.g. skewFaces;

The optional options are
-region name: specifies the region name;
-case dir: specifies the case directory;
-patches patchesList: specifies a list of patches to output, e.g. '(inlet outlet wall)\ or

'(hull)';

Installation

1) Create a working copy using svn checkout. The recommended local directory to
checkout the package is

NavyFOAM/applications/utilities/postProcessing/dataConversion

svn checkout svn+ssh://blackwater/5700/NavyFOAM/IntegrationBranches/NavyFOAM-1.5-dev-
revl745/NavyFOAM/applications/utilities/postProcessing/dataC on version

/NavyFaceSetToTecplot

2) Go to directory ./dataConversion/NavyFaceSetToTecplot and compile the package:

wmake

The generated executable file NavyFaceSetToTecplot can be found in a user
application binary file directory specified by $FOAM_USER_APPBIN.

Output

The output files can be found in $CASE_DIR/TecplotData, for example

NavyFaceSetToTecplot skewFaces -patches '(hull symmetry)'

may generate skewFaces.dat in $CASE_DIR/TecplotData. The Tecplot data file
skewFaces.dat should contain the following zones:

ZONE T = volMesh

ZONE T = hull

ZONE T = symmetry

ZONE T = skewFaces

The first zone is the volume mesh. The next two zones are the surface mesh for the
user specified patches. The last zone is a surface mesh for the faceSet. In Tecplot, the mesh
of each zone can be plotted in different colors.

59

THIS PAGE INTENTIONALLY LEFT BLANK

60

Appendix C: icoFoam Lid Driven Cavity Tutorial

This tutorial involves using the laminar, transient, incompressible solver for a 2-D
cavity. The cavity consists of 4 walls, where the top wall is moving, and the other walls are
stationary. First, we will go over pre-processing and case setup, then we will run the test case,
and finally we will look at some post-processed results.

For more detailed information on the OpenFOAM code and settings consult the User's
Guide: http://foam.sourceforge.net/doc/Guides-a4/UserGuide.pdf.

Pre-Processing and Case Setup

Upon looking in the case directory (screen capture below) you will notice that there are
directories labeled system and 0, and a file named transportProperties. There is also a file
labeled 2D cavity allCoarseStr.cas, which is a mesh exported from Gridgen in Fluent ASCII
double precision format. We will discuss the existing files and directories later, but now we need
to import the fluent .cas file into OpenFoam. This will be done using the command
fluentMesh To Foam.

[kdelaneytiRetech allCoarseStruct]$ 1
total 1.2M
-rw-n»-r—
drwxrwxr-x
-rw-r
drwxr-xr-x

1 kdelaney kdelaney 1.2M Feb 19 12:31 2D_cavity_allCoarseStr.cas
2 kdelaney kdelaney 4.OK Mar 9 16:53 system
1 kdelaney kdelaney 886 Apr 1 08:35 transportProperties
2 kdelaney kdelaney 4.OK Apr 1 08:35 0

Mesh Input

Now enter the fluentMeshToFoam command as seen below and view the output from
the screen dump. The extra "| tee conversionLog" is not essential and is only included to record

61

the screen dump in a file named conversionLog. Your output should be the same as the screen
captures.

There is a lot of information on the screen dump, most of which is self explanatory. The
most important part to notice is the last two lines of text in the screen dump which tell you that
the mesh information has been written into a directory named poly Mesh inside a newly created
directory named constant. Finally the command ends successfully with the "End." statement.

62

[kdelaneySRetech allCoarseStruct1$ fluentMeshToFoan 2D_cavity_allCoarseStr.cas | tee conversionLog
/. .\

\\ / F ield | OpenFOAH: The Open Source CFD Toolbox
\\ / 0 peration I Version: 1.5-dev
\\ / A nd I Web: http://www.OpenF0AH.org
\\/ M anipulation I

\. ./
Exec : fluentMeshToFoan 2D_cavlty_allCoarseStr.cas
Date : Mar 09 2010
Tine : 16:40:45
Host : Retech
PID : 5119
Case : /hone/kdelaney/NavyFoan_runs/run/flat_plate/novingWallCavity/allCoarseStruct
nProcs : 1

//******** //
Create tine

Reading header: "exported fron Cridgen 15.14R1"
Dinension of grid: 3
Nunber of points: 9522
nunber of faces: 18632
Nunber of cells: 4624
Reading points
Other readCellCroupData: 2 1 1210 1 4
Reading uniforn cells
Read zonel:2 nane:fluid patchTypelD:fluid
Reading zone data
Enbedded blocks in connent or unknown: (
Found end of section in unknown:)
.Reading uniforn faces
Read zonel:3 nane:interior-3 patchTypelD:interior
Reading zone data
Enbedded blocks in connent or unknown: (
Found end of section in unknown:)
.Reading uniforn faces
Read zonel:4 nane:Inlet-4 patchTypeID:wall
Reading zone data
Enbedded blocks in connent or unknown: (
Found end of section in unknown:)
Reading uniforn faces

Read zonel:5 nane:Top-5 patchTypeID:wall
Reading zone data
Enbedded blocks in connent or unknown: (
Found end of section in unknown:)
Reading uniforn faces

Read zonel:6 nane:side_l-6 patchTypeID:wall
Reading zone data
Enbedded blocks in connent or unknown: (
Found end of section in unknown:)
Reading uniforn faces
Read zonel:7 nane:0utlet-7 patchTypeID:wall
Reading zone data
Enbedded blocks in connent or unknown: (
Found end of section in unknown:)
Reading uniforn faces

Read zonel:8 nane:Botton-8 patchTypeID:wall
Reading zone data
Enbedded blocks in connent or unknown: (
Found end of section in unknown:)
.Reading uniforn faces

(screen output continues on the next page...)

63

Read zonel:9 nane:side_2-9 patchTypeID:wall
Reading zone data

FINISHED LEXING

dinension of grid: 3
Creating shapes for 3-D cells
Building patch-less nesh...—> FOAM Warning :

From function polyHesh::polyHesh(... construct from shapes.,
in file neshes/polyMesh/polyMeshFronShapeMesh.C at line 581
Found 9520 undefined faces in nesh; adding to default patch.

done.

Building boundary and internal patches.
Creating patch 0 for zone:
Creating patch 1 for zone:
Creating patch
Creating patch
Creating patch
Creating patch
Creating patch

for zone:
for zone:
for zone:

3 start:
4 start:
5 start:
6 start:
7 start:

Patch interior-3

1 end: 9112 type: interior nane: interior-3
9113 end: 9180 type: wall nane: Inlet 4
9181 end: 9248 type: wall nane: Top-5
9249 end: 13872 type: wall nane: side_l-6
13873 end: 13940 type: wall nane: Outlet-7

for zone: 8 start: 13941 end: 14008 type: wall nane: Botton-8
for zone: 9 start: 14009 end: 18632 type: wall nane: side_2-9
is internal to the nesh and is not being added to the boundary.

Adding new patch Inlet-4 of type wall as patch 0
Adding new patch Top-5 of type wall as patch 1
Adding new patch side_l-6 of type wall as patch 2
Adding new patch 0utlet-7 of type wall as patch 3
Adding new patch Botton-8 of type wall as patch 4
Adding new patch side_2-9 of type wall as patch 5

Default patch type set to enpty

Writing nesh... to "constant/polyMesh" done.

End

constant/ directory and the createPatch Command

All of the mesh geometry details are stored in the constant/polyMesh directory,
boundary file is typically the only one in polyMesh directory that gets edited.

The

Now open up your constant/polyMesh/boundary file, which contains all of the
information for surfaces that were imported from your mesh. It should look like the screen
capture seen below.

The information at the top of the file (under the FoamFile header) gives a description of
the file (version, format, class, etc.) and is most likely only useful to more experienced users, but
at the very least it is always useful as a label to let you know where you are. Further down the
file you can see that 6 surfaces (Inlet-4, Top-5, etc.) were imported with the same boundary
names that were created in Gridgen. Each surface is described by the type of OpenFoam surface,
nFaces and startFace. Only the type is of concern to the user at this stage and that will be
discussed in more detail later on.

64

• •_ C++ -«
========= I
\\ / F ield I OpenFOAM: The Open Source CFD Toolbox
\\ / 0 peration | Version: 1.5-dev
\\ / And I Web: http://www.OpenFOAM.org
\\/ M anipulation | » v

FoanFile

{
version 2.0;
format ascii;
class polyBoundaryMesh;
location "constant/polyMesh";
object boundary;

Inlet-4

{
type wall;
nFaces 68;
startFace 9112;

}
Top-5

{
t ype wa 11;
nFaces 68;
startFace 9180;

)
side_l-6

{
type wall;
nFaces 4624;
startFace 9248;

}
Outlet-7

{
type wall;
nFaces 68;
startFace 13872;

}
Botton-8

{
type wall:
nFaces 68;
startFace 13940;

}
side_2-9

{
type wall;
nFaces 4624;
startFace 14008;

}

// A** //

65

Often times the boundary file needs to be altered from what is originally created during
the import process. For this case we need to edit the type of surface for some surfaces, and we
would like to group certain surfaces together to avoid redundancy and make life easier.

First we will group some of the surfaces together for ease of book-keeping. To group
surfaces together, we use the createPatch command. For now let's say that we want to create a
group of surfaces for what will be: the moving lid {movingWall), the stationary walls
{fixedWalls), and the 2-D surfaces on the front and back (frontAndBack). The file that allows us
to group surfaces is called createPatchDict and it is located in the system directory.

If you open your system/createPatchDict file you will notice that it needs to be edited.
Again, there is detailed information about this dictionary file underneath the FoamFUe header,
and can be used as a reference to the user. Underneath the FoamFUe section are the
matchToTolerance and pointSync commands which are not important right now and should be
left as is. Next, you will see a patches section, which is where we will do our editing to join
surfaces under one boundary name and type.

The user should edit their createPatchDict file patchesQ section to look like the screen
capture on the next page. The first patch is essentially renaming the Top-5 boundary to
movingWall, while leaving the type as wall. This is equivalent to simply changing the name in
the original constant/poly Mesh/boundary file, but was done here for educational purposes. The
second patch will group the Inlet-4, Bottom-8, and Outlet-7 surfaces into one boundary named
fixedWalls, and this new boundary will remain a type wall. Lastly, the side_l-6 and side_2-9
surfaces will be combined to frontAndBack and this new boundary will be of type empty. The
empty patch type is required for ALL 2-D surfaces.

Now we are ready to combine the surfaces, but first it is generally a good idea to copy
our constant directory before we combine our surfaces, so there is always a reference. So for
Linux users, simply:

» cp r constant origconstant

to copy our reference constant folder to orig_constant. Then in the case directory enter
"createPatch" in the command line. The resulting screen dump should look like the following
screen capture.

66

/ - -*\
========= I
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / 0 peration | Version: 1.0
\\ / A nd I Web: http://www.openfoan.org
\\/ M anipulation |

\-

FoanFile

{
version
format

root
case
instance
local

class
object

2.0;
ascii;

"/hone/penfold/nattijs/foan/mattijs2.1/run/icoFoan"
"cavity";
"system";

dictionary;
createPatcheDict;

// * * ****** ***** * * * //

// Tolerance used in matching faces. Absolute tolerance is span of
// face tines this factor.
natchTolerance 1E-3;

// Do a synchronisation of coupled points.
pointSync true;

// Patches to create.
// If no patches does a coupled point and face synchronisation anyway.
patches

(

nane novingWall;
type wall;
constructFron patches;
patches (Top-5);

nane fixedWalls;
type wall;
constructFron patches;
patches (Inlet-4 Botton-8 Outlet-7);

nane frontAndBack;
type enpty:
constructFron patches;
patches (side_l-6 side_2-9);

u

67

[kdelaneyGRetech allCoarseStruct]$ cp -r constant/ orig_constant
[kdelaneyORetech allCoarseStruct]$
[kdelaneySRetech allCoarseStruct]$
[kdelaneyflRetech allCoarseStruct]$
[kdelaneytfRetech allCoarseStructjj
[kdelaney<9Retech allCoarseStruct]$ createPatch
/*

I \\
I \\
I \\
I \\/
V
Exec :
Date
Tine
Host
PID :
Case :
nProcs :

/

F ield
0 peration
A nd
M anipulation

OpenFOAM: The Open Source CFD Toolbox
Version: 1.5-dev
Web: http://www.OpenFOAM.org

•/
createPatch
Mar 09 2010
16:53:16
Retech
51S8
/hone/kdelaney/NavyFoan_runs/run/flat_plate/novingWallCavity/allCoarseStruct
1

Create tine

Reading createPatchDict.

Using relative tolerance 0.001 to natch up faces and points

Create poly-Mesh for tine = 0

Adding new patch novingWall of type wall as patch 6
Adding new patch fixedWalls of type wall as patch 7
Adding new patch frontAndBack of type enpty as patch 8

Moving faces fron patch Top-5 to patch 6
Moving faces fron patch Inlet-4 to patch 7
Moving faces fron patch Botton-8 to patch 7
Moving faces fron patch 0utlet-7 to patch 7
Moving faces fron patch side_l-6 to patch 8
Moving faces fron patch side_2-9 to patch 8

Doing topology nodification to order faces.

Synchronising points.
Points changed by average:0 nax:0

Renoving patches with no faces in then.

Renoving enpty patch Inlet-4 at position 0
Renoving enpty patch Top-5 at position 1
Renoving enpty patch side_l-6 at position 2
Renoving enpty patch Outlet-7 at position 3
Renoving enpty patch Botton-8 at position 4
Renoving enpty patch side_2-9 at position 5
Renoving patches.
Writing repatched nesh to 0.005

End

• //

68

You will notice that the second to last line states "Writing repatched mesh to 0.005". The
createPatch command will write the new patched surface information into a directory whose
name is the first time step output of your future run, which in this case is a 0.005.

So now you need to get rid of the old constant directory and move the new 0.005
directory to constant In Linux this would be accomplished by:

» mv constant origconstant

» mv 0.005 constant

Now the transportProperties file needs to be placed in the constant directory. The
transportProperties file must ALWAYS be present in the constant directory. In Linux this
would be accomplished by:

» mv transportProperties constant/

Now if you open the constant/polyMesh/boundary file it should have the correct number
of patches, names, and types. Your new boundary file should look like the screen capture on the
next page.

69

• *- C++ -*

========= I
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / 0 peration | Version: 1.5-dev
\\ / A nd | Revision: exported
\\/ M anipulation | Web: http://www.OpenFOAM.org

*

FoawFile

{

//

3
(

version
format
class
location
object

2.0;
ascii;
polyBoundaryHesh;
"polyMesh";
boundary;

//

novingWall
{

type
nFaces
startFace

}
fixedWalls
{

type
nFaces
startFace

)
frontAndBack
{

type
nFaces
startFace

wall:
68;
9112;

wall;
204;
9180:

empty;
9248;
9384;

// *•**•* * -fr •** -t ************** * * **-*•**•»****************************< ************* //

Now we have the geometry imported and named as we want for the run. A good next step
is to export the geometry into a visual package (EnSight, ParaView, etc.) and make sure that all
surfaces are grouped and labeled correctly. To export the geometry, use foam ToEnsight for
EnSight, foamToVTK for ParaView, and no additional command is needed for ParaFoam. So
now take a minute or two and inspect your geometry in your package of choice. Your geometry
should look like the below figure, with the appropriate surface labels.

70

Cavity geometry as seen in EnSight

Material Properties

The next step is to set up the material properties for the fluid. For the icoFoam solver,
only the kinematic viscosity is required in the constant/transportProperties dictionary file. Open
the transportProperties file, it should look like the screen capture below. No editing is
necessary, just note that kinematic viscosity is always set in transportProperties.

0 -- C++

V

\\ / F ield
\\ / 0 peration
\\ / A nd
\\/ M anipulation

OpenFOAM: The Open Source CFD Toolbox
Version: 1.5
Web: http://www.OpenFOAM.org

-*\

7
FoamFile
{

version 2.0;
forrat ascii;
class dictionary;
object transportProperties;

}

nu nu [0 2 -1 0 0 0 0] 0.01;

// *** ****************************** //

71

The kinematic viscosity, nu, is entered in as:

nu nu [0 2-1 0 0 0] 0.01;

where [0 2-1 0 0 0 0] sets the units based on [Mass Length Time Temperature Quantity Current
Luminous intensity]. The kinematic viscosity dimensions are LengthVTime or in SI units: mVs.
The value of the kinematic viscosity is set to 0.01. Remember that this value must always be
consistent with the Reynolds number,

Re = UL/nu

0/ directory (Initial and Boundary Conditions)

Now we turn our attention to the initial and boundary conditions, which are stored in the
0/ directory.

For the icoFoam solver only U and/? files are needed in the 0/directory.

Open the 0/U file; it should look like the screen capture below.

72

0 -
\\ / F ield
\\ / 0 peration
\\ / And
\\/ M anipulation

 _ C++ -

OpenFOAM: The Open Source CFD Toolbox-
Version: 1.5
Web: http://wvm.OpenFOAM.org

*\

*
FoamFile

{
version
format
class
object

)
/ / * * * * i>

2.0;
ascii;
volVectorField;
U;

****************************** rr* //

dimensions [01-10000];

internalField uniform (0 0 0);

boundaryField
{

movingWall

type
value

fixedWalls

type
va lue

frontAndBack

fixedValue;
uniform (1 0 0);

fixedValue;
uniform (0 0 0);

type empty;

// ********A********************4**ii* //

In the 0/U file notice:

U is a vector field quantity. All U values must be set in vector format, (XXX).

The U dimensions must match the variable by M,L,T,-- so velocity is [0 I -I 0 0 0 0]

The "internalField" sets the initial flow field condition for U. For this case the fluid is
initially at rest (Ux,Uy,Uz = 0)

73

The "boundaryField" sets velocity boundary conditions for ALL surfaces. All surfaces
must be included with proper BC's. All surface names must match the
constant/poly Mesh/boundary surface name exactly. The order of surfaces is not important, but
the names must match identically.

The velocity boundary conditions for the three surfaces are as follows:

The movingWall is set with

type fixedValue;

value uniform (1 0 0);

for the top lid to move with velocity of Ux=\.

The fixedWalls are set with

type fixedValue;

value uniform (0 0 0);

to apply the no-slip boundary condition to the walls.

The frontAndBack surfaces are set with

type empty;

because they are the 2-D boundaries. ALL 2-D boundaries must have type set to empty.

Again, the order of the surfaces in the 0/... files doesn't matter, but the names and types
MUST be consistent with those listed in the constant/polyMesh/boundary file.

Now open the 0/p file, it should look like the screen capture below.

74

*
FoamFile

{

\\ / F ield
\\ / 0 peration
\\ / A nd
\\/ M anipulation

 _ C++ -

OpenFOAM: The Open Source CFD Toolbox
Version: 1.5
Web: http://www.OpenFOAM.org

 *\

1
II

version
format
class
object

2.0;
ascii;
volScalarField;

p;

************************************ * //

dimensions [02-20000];

internalField uniform 0;

boundaryField

movingWall

type zeroGradient;

fixedWalls

type

frontAndBack

type

zeroGradient;

empty;

// // *************************************** **************** ******** **********

In the 0/p file notice:

p is a scalar field quantity. All p values must be set as a scalar, X, value.

The p dimensions must match the variable by M,L,T,... so pressure is [0 2 -2 0 0 0 0],
because in icoFoamp is actually the pressure divided by the density, thus the SI units would be
m2/s2.

The "internalField" sets the initial condition for p. For this case (and most others) we do
not care about the absolute value of the pressure, p, so we just set it to 0 for ease.

75

The boundary Held sets pressure boundary conditions for ALL surfaces. All surfaces
must be included with proper BC's that are consistent with the constant/polyMesh/boundary
surfaces.

The pressure boundary conditions for the three surfaces are as follows:

The movingWall is set with

type zeroGradient;

for the moving wall.

The fixedWalls are set with

type zeroGradient;

for the no-slip wall.

The frontAndBack surfaces are set with

type empty;

because they are the 2-D boundaries. ALL 2-D boundaries must have type set to empty.

system/ directory (Solver Settings)

Now we will look at some of the solver settings and controls that are located in the
system/ directory. We will focus on the controlDict, fvSolution, and fvSchemes files. We
already used the createPatchDict to merge multiple surfaces.

Open the system/controlDict dictionary file. It should look like the screen capture below.
The controlDict file sets all of the run-time parameters and output information. This is also
where run-time libraries and functions, such as force outputs over a patch and dynamic mesh
libraries are specified.

76

0
\\ / F ield
\\ / 0 peration
\\ / A nd
\\/ M anipulation

*

FoanFile

{
version
fornat
class
object

}
// ************

 •_ C++ _*

OpenFOAM: The Open Source CFD Toolbox
Version: 1.5
Web: http://www.OpenFOAM.org

\

2.0;
ascii;
dictionary;
controlDict;

* * * * *****

application icoFoan:

startFron startTine;

startTine 0:

stopAt endTine;

endTine 0.3;

deltaT 0.00001;

writeControl tineStep;

writelnterval 3000;

purgeWrite 0;

writeFornat ascii;

writePrecision 6;

writeConpression uncompressed;

t ineFornat genera 1;

tinePrecision 6;

runTineModifiable yes;

// ************* ******************************4r***************************** //

The solver specified in application input does not matter. The solver is specified on the
command line or in a script file. Thus, this is an insignificant line for our purposes.

The solver settings are fairly obvious, and more detail is provided on page U-108 of the
User's Guide (http://foam.sourceforge.net/doc/Guides-a4/UserGuide.pdO- For now we will only
cover a broad view of the file.

77

We know that icoFount is a transient solver. We see that we will run the simulation from
0 to 0.3 seconds in time steps of 0.00001 seconds with the solver writing output information
every 3000 time steps (t=0.03, 0.06, 0.09, ...). The data will be written in ASCII format in
directories that are denoted by time 6 digits long. Notice that runTimeModifiable is chosen to
yes, this means that we can make changes to the controlDict in the middle of a run, and they will
be adjusted on the fly, as opposed to having the settings set in stone for the whole calculation.

One important note is that to start a calculation from a previous solution the startFrom
entry must be switched to latestTime, and desired start time information (directory and BC's)
must be present in the case directory.

Now open the system/fvSolution dictionary file. It should look like the screen capture on
the next page.

The fvSolution file contains linear solver information as well as solver algorithm settings.

The solvers section contains linear solver settings for pressure and velocity. Note that for
this case we are using preconditioned conjugate gradient solvers (PCG for symmetric matrices
and PBiCG for asymmetric matrices), but we also commonly use multi-grid solvers (GAMG,
AAMG, etc.). The solver tolerance and relative tolerance settings are not important right now.
The ntinlter command sets a minimum number of times the linear solver will iterate on a
variable. It is usually recommended that the user always set a minimum number of iterations > 0
to prevent the solver from prematurely not solving for a variable.

Below the solvers section are pressure-implicit split-operator (P/SO) algorithm control
settings. These PISO settings are not particularly useful to the user at this time, so only a broad
view of what each setting means is given. Also, note that the PISO algorithm must be used for
all transient solvers and the SIMPLE algorithm must be used for all steady-state solvers. For this
case we have nCorrectors set to 2, which means that we will solve the pressure equation twice
per time iteration. The value of nNonOrthogonalCorrectors is set to 0. This parameter is not
particularly important to the user at this moment. Notice that we have set cell number 0 as our
reference cell, where the reference value is 0. This is the reference pressure for the
incompressible solver.

78

0-

\\ / F ield
\\ / 0 peration
\\ / A nd
\\/ M anipulation

 _ C++ -

OpenFOAM: The Open Source CFD Toolbox
Version: 1.5
Web: http://www.OpenFOAM.org

*
FoanFile
{

-*\

version
foriiat
class
object

// *

2.0;
ascii;
dictionary;
fvSolution;

******************************* //

solvers
{

P PCG
[

preconditioner DIC;
tolerance le-06;
relTol 0;
ninlter 5:

1:

0 PBiCG
{

preconditioner DILL);
tolerance le-05;
relTol 0;
minlter 5;

};
}

PISO
{

nCorrectors 2;
nNonOrthogonalCorrectors 0;
pRefCell 0;
pRefValue 0;

// ** *********************** !f******** + ****A***********-*************':»*****-*7+- U

Now open the system/fvSchemes dictionary file. It should look like the screen capture
below.

Many of the fvSchemes settings are not particularly useful to the user at this time, so only
a broad view of what each setting means is given. For more detail on these settings consult page
U-l 10 of the User's Guide. More detail of the discretization settings is given in the simpleFoam
and rasInterFoam tutorials.

79

/* »_ C++ -* *\

I \\ / F ield
| \\ / 0 peration

\\ /
w/

oamFile

version
format
class
object

A nd
M anipulation

2.0;
ascii;
dictionary;
fvSchenes;

OpenFOAM: The Open Source CFD Toolbox
Version: 1.5
Web: http://www.0penF0AM.org

A*********************** ******** //

ddtSchenes

default

gradSchemes

default
grad(p)

divSchemes

default
div(phi.U)

aplacianSchenes

default none;
laplacian(nu,U) Gauss linear corrected;
laplacian((l|A(U)),p) Gauss linear corrected;

Euler;

Gauss linear;
Gauss linear;

none;
Gauss linear;

nterpolationSchenes

default linear;
interpolate(HbyA) linear;

snCradSchenes

default

luxRequired

default
p:

corrected;

n / ******************&*+***< //

SO

The fvSchemes file sections declares the following settings:

ddt -> time discretization

gradSchemes -> gradient term discretizations

divSchemes -> divergence terms discretization

laplacianSchemes -> Laplacian terms discretization

interpolationSchemes -> interpolation of values from cell centers to cell face centers

snGradSchemes -> surface normal gradient evaluation at cell faces

JluxRequired -> lists fields where flux is generated in the application

For all of the fvSchemes fields a default value can be specified, or default can be set to
none which means that the user must enter all values for the appropriate variables themselves.

Running icoFoam

Now we are ready to run. Type icoFoam on the command line like the screen capture
below, and hit "ctrl+c" to take a look at the first few iterations (piping the screen dump to a log
file by using "icoFoam | tee log" is another option).

81

[kdelaneyORetech tut_allCoarseStruct)$ icoFoam
/.

 -/

\\ / F icld
\\ / 0 peration
\\ / A nd
\\/ M anipulation

*
Exec : icoFoam
Date : Jun 30 2010
Tire : 14:53:06
Host : Retech
PID : 20508
Case : /home/kdelaney/NavyFoam_runs/run/flat_plate/iiovingl«lallCavity/tut_allCoarseStruct
nProcs : 1

 «\

OpenFOAM: The Open Source CFD Toolbox
Version: 1.5-dev
Web: http://mm.OpenFOAM.org

// /; ,
Create time

Create nesh for tine = 0

Reading transport Properties

Reading field p

Reading field U

Reading/calculating face flux field phi

Starting tine loop

Tine = le-05

Courant Number mean: 0 max: 0 velocity magnitude: 0
PBiCC: Solving for Ux. Initial residual = 1, Final residual = 1.68372e-20. No Iterations 5
PBiCC: Solving for Uz: solution singularity
PCG: Solving for p. Initial residual = 1, Final residual = 6.77855e-07. No Iterations 138
tine step continuity errors : sun local = 1.14833e-15. global = i.92084e-26. cumulative = 3.92084e-26
PCC: Solving for p. Initial residual = 0.0407237. Final residual = 8.83925e-07, No Iterations 126
tine step continuity errors : sun local = 3.57796e-15. global = -5.09959e-25. cumulative = -4.7075e-25
ExecutionTime - 0.13 s ClockTine = 0 s

Tine = 2e-05

Courant Number mean: 1.36506e-07 max: 9.7988e-05 velocity magnitude: 0.0362317
PBiCG: Solving for Ux. Initial residual = 0.134603. Final residual = 1.07427e-21. No Iterations r.
PBiCC: Solving for Uz. Initial residual = 0.333103. Final residual • 8.02106e-21. No Iterations 5
PCC: Solving for p. Initial residual = 0.100492. Final residual = 8.49585e-07. No Iterations 125
time step continuity errors : sum local = 3.78654e-15. global • 3.849e-25. cumulative = -8.58504e-26
PCC: Solving for p. Initial residual = 0.0020439, Final residual = 9.96011e-07. No Iterations 112
time step continuity errors : sum local = 4.8709e-15, global = 4.60384e-25. cumulative = 3.74534e-25
ExecutionTime = 0.2 s ClockTine = 0 s

Time = 3e-05

Courant Number mean: 2.66818e-07 max: 0.000190662 velocity magnitude: 0.0705446
PBICC: Solving for Ux. Initial residual = 0.0711115, Final residual = S.11184e-22. No Iterations 5
PBiCC: Solvins for Uz. Initial residual = 0.196949. Final residual • 5.20581e-21. No Iterations 5

Some observations from the first few iterations:

You can see that the solver started from time equal to 0 seconds and is marching in
increments of le-5 seconds.

For each iteration the pressure equation is solved twice and the velocity equations are
solved once. For each variable linear solver we can see the initial residual, final residual, and the
number of iterations it took to drop from the initial to the final residual. We set all of these
tolerances and iteration criteria in the system/fvSolution dictionary file.

There are also Courant number and continuity error reports.

82

The best way to typically monitor the solution is to make sure that the velocity magnitude
stays at a reasonable number, and make sure that initial pressure residuals are decreasing or are
holding steady at an acceptable value.

The last line of the time iteration produces execution and clock time information. This is
useful in gauging the efficiency of your solution.

Now let the icoFoam solver go until 0.5 seconds to get a converged solution.

Post-Processing

Notice that there are many time directories in your case directory. Each of these
directories contains output information for their respective time step.

To look at the post-processed results simply type the following commands, depending on
the post-processing tool of choice:

-> to look at the results in EnSight

-> to look at the results in ParaView

»foamToEnSight -latestTime

»foamToVTK -latestTime

where the command -latestTime is used to only look at the results from the last output time step.
To look at the results for all time steps simply leave off the -latestTime command, and to look at
the results for a specific time (ie 0.005) use -time 0.005.

To look at the results in ParaFoam, no additional commands are needed, simply open
ParaFoam in the case directory.

Your results should look like the velocity magnitude (Vmag) and axial velocity
(VmagfxJ) contours below.

83

^~~—~^

, 1

V m

HUll

urn

II III

•

84

Appendix D: simpleFOAM Body-1 Tutorial

This tutorial involves using the turbulent, steady, incompressible solver for a 3-D body-
of-revolution, the Body-1. Only half the body is solved, as symmetry is assumed. The domain is
non-dimensionalized by length, so all lengths in the domain are normalized by body length. First,
we will go over pre-processing and case setup, then we will run the test case, and finally we will
look at some post-processed results.

For more detailed information on the OpenFOAM code and settings consult the User's
Guide: http://foam.sourceforee.net/doc/Guides-a4/UserGuide.pdf.

Pre-Processing and Case Setup

Upon looking in the case directory (screen- capture below) you will notice that there are
directories labeled system and 0, and a fde named transportProperties. There is a parallel
processing script named oFOAM.scp. There is also a file labeled bodyl_Box_ASCU.fluent.cas,
which is a mesh exported from Gridgen in Fluent ASCII double precision format. We will
discuss the existing files and directories later, but now we need to import the fluent .cas file into
OpenFoam. This will be done using the command fluentMesh To Foam.

1 [delaneykQaitazon bodyUTutorial]*
total 237M

1 delaneyk users 1.6K Apr
1 delaneyk users 4.6K Apr
2 delaneyk users 80 Apr
2 delaneyk users 81 Apr
1 delaneyk users 658 Apr

rw-r—r—
rwxr-xr-x
drwxr-xr-x
drwxr-xr—
rw-r—r—
rw-r--r-- 1 delaneyk users 237M Apr

8 15:17 transportProperties
8 15:17 RASProperties
8 15:17 system
8 15:17 0
8 15:17 oFOAM.scp
8 15:31 bodyl_Box-ASCII.fluent.cas

Mesh Input

Now enter the fluentMeshToFoam command as seen below and view the output from
the screen dump. Your output should be the same as the screen captures on the next pages.

There is a lot of information on the screen dump, most of which is self explanatory. The
most important part to notice is the last two lines of text in the screen dump which tell you that
the mesh information has been written into a directory named polyMesh inside a newly created
directory named constant. Finally the command ends successfully with the "End." statement.

85

[delaneykflanazon bodyl_TutorialJ$ fluentMeshToFoan bodyl_Box-ASCII.fluent.cas
/. -\

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / 0 peration | Version: 1.5-dev
\\ / A nd | Revision: exported
\\/ H anipulation | Web: http://www.OpenFOAM.org v v

Exec : fluentMeshToFoan bodyl_Box-ASCII.fluent.cas
Date : Apr 08 2010
Tine : 15:31:37
Host : anazon.dt.navy.nil
PID : 19865
Case : /san/hone/delaneyk/NavyF0AM-1.5-dev-rev995/delaneyk-l.5-dev/run/bodyl/boundingBoxFar
nProcs : 1

/1 * + *-*#******»• + *•** + * + *•«***•»*****•*•• / /

Create tine

—> FOAM Warning :
Fron function dlLibraryTable::open(const fileNaneA functionLibNane)
in file db/dlLibraryTable/dlLibraryTable.C at line 86
could not load /san/hone/delaneyk/NavyFOAM-1.5-dev-rev995/NavyF0AM/lib/linux64CccDPOpt/li

ModelllprintCoeffsEv
Dinension of grid: 3
MNunber of cells: 2180547
nunber of faces: 5106844
Nunber of points: 860613
Other readCellGroupData: a 1 2145c3 1 0
Reading nixed cells
Reading nixed faces
Reading uniform faces
Reading uniform faces
Reading uniform faces
Reading uniform faces
Reading uniform faces
Reading uniform faces
Reading nixed faces
Reading points
Read zone2:10 nane:fluid patchTypelD:fluid
Reading zone data

Read zone2:8 nane:symmetry patchTypelD:symmetry
Reading zone data

Read zone2:6 name:outlet patchTypeID:pressure-outlet
Reading zone data

Read zone2:5 name:inlet patchTypelD:inlet-vent
Reading zone data

Read zone2:4 nane:farfield patchTypeID:pressure-far-field
Reading zone data

Read zone2:l name:bow patchTypeID:wal1
Reading zone data

Read zone2:2 name:midbody patchTypeID:wall
Reading zone data

Read zone2:3 nane:stern DatchTvDeID:wall

(screen output continues on the next page...)

86

Reading zone data

Read zone2:9 name:interior-faces patchTypelD:interior
Reading zone data

FINISHED LEXINC

dimension of grid: 3
Creating shapes for 3-D cells
Building patch-less mesh...—> FOAM Warning :

From function polyMesh::polyMesh(... construct from shapes...)
in file iieshes/polyMesh/polyMeshFromShapeMesh.C at line 581
Found 111916 undefined faces in nesh; adding to default patch.

done.

Building boundary and internal patches
maxZonelD: 9
Creating patch 0 for zone: 9 start:
Creating patch 1 for zone: 1 start:
Creating patch 2 for zone: 2 start:
Creating patch 3 for zone: 3 start:
Creating patch 4 for zone: 4 start:
Creating patch 5 for zone: 5 start:
Creating patch 6 for zone: 6 start:
Creating patch 7 for zone:

1 end: 4994928 type:
4994929 end: 5001640
5001641 end: 5013072
5013073 end: 5035504
5035505 end: 5037282
5037283 end: 5037724
5037725 end: 5038166
5038167 end: 5106844
the mesh and is not

8 start:
Patch interior-faces is internal to
Adding new patch bow of type wall as patch 0
Adding new patch midbody of type wall as patch 1
Adding new patch stern of type wall as patch 2
Adding new patch farfield of type patch as patch 3
Adding new patch inlet of type patch as patch 4
Adding new patch outlet of type patch as patch 5
Adding new patch symmetry of type symmetry-Plane as patch

Default patch type set to empty-

Writing mesh... to "constant/polyMesh" done.

End

interior name: interior-faces
type: wall name: bow
type: wall name: midbody
type: wall name: stem
type: pressure-far-field name: farfi
type: inlet-vent name: inlet
type: pressure-outlet name: outlet
type: symmetry name: symmetry
being added to the boundary.

Now run the checkMesh command for two reasons:

• to make sure the mesh was imported correctly
• to asses the quality of the mesh for the OpenFOAM solver

Your checkMesh output should look like the screen captures on the next pages.

87

[delaneyk^anazon bodyl_Tutorial]$ checkMcsh
/* -*\

\\
w
\\ /
w

*
Exec
Date
Tine
Host
PID
Case
nProcs

/ F ield | OpenFOAM: The Open Source CFD Toolbox
/ 0 peration | Version: 1.5-dev

A nd | Revision: exported
M anipulation | Web: http://www.OpenFOAM.org

V
checkMesh
Apr 08 2010
15:36:20
.111,1 zim.dt. navy .nil
21145
/san/hone/delaneyk/NavyF0AM-1.5-dev-rev995/delaneyk-1.5-dev/run/bodyl/boundingBoxFar
1

Create tine
//

--> FOAM Warning :
From function dlLibraryTable::open(const fileNane& functionLibNane)
in file db/dlLibraryTable/dlLibraryTable.C at line 86

could not load /san/hone/delaneyk/NavyFOAM-1.5-dev-rev995/NavyFOAM/lib/linux64CccDPOpt/li
ModelllprintCoeffsEv
Create polyMesh for tine = constant

Tine = constant

Mesh stats
points: 860613
faces: 5106844
internal faces : 4994928
cells: 2180547
boundary patches: 7
point zones ii

face zones: 0
cell zones: II

Nunber of cells of each type:
hexahedra: 0
prisns: 1379584
wedges: 0
pyramids: 0
tet wedges: 0
tetrahedra: 800963
polyhedra: 0

Checking topology...
Boundary definition OK.
Point usage OK.
Upper triangular ordering OK.
Face vertices OK.
Nunber of regions: 1 (OK).

Checking patch topology for multiply connected surfaces
Patch Faces Points Su
bow 6712 3459 ok
nidbody 11432 5882 ok
stern 22432 11490 ok
farfield 1778 950 ok
inlet 442 252 ok
outlet 442 252 ok

Surface topology
(non-closed singly
(non-closed singly
(non-closed singly
(non-closed singly
(non-closed singly
(non-closed singly-

connected)
connected)
connected)
connected)
connected)
connected)

(Screen capture continues on next page...)

88

symmetry 68678 50479 ok (non-closed singly connected)

Checking geometry...
This is a 3-D mesh
Overall domain bounding box (-10 -10 0) (10 10 10)
Mesh (non-empty) directions (1 1 1)
Mesh (non-empty, non-wedge) dimensions 3
Boundary openness (-1.71587e-18 -1.21515e-17 -S.8041e-16) Threshold = le-06 OK.
Max cell openness = 5.13185e-14 OK.
Max aspect ratio = 564.729 OK.
Minimum face area = 5.88008e-10. Maximum face area = 1.24S94. Face area magnitudes OK.
Min volume = 6.96628e-14. Max volume = 0.421459. Total volume = 4000. Cell volumes OK.
Mesh non-orthogonality Max: 61.1137 average: 9.70308 Threshold = 70
Non-orthogonality check OK.
Face pyramids OK.
Max skewness = 1.25241 OK.

Mesh OK.

End

There is a lot (probably too much) of information with the checkMesh screen dump. At
the top, the Mesh stats section shows that the mesh has 2.18 million total cells/elements, and the
Number of cells of each type section shows 1.38 million are prisms and 0.8 million are
tetrahedral elements. Below that, we see that the topology checks out OK and that all the surfaces
are correctly connected.

Finally, the Checking geometry... section displays mesh quality statistics. This section
gives a lot of information, but the most important parts are the aspect ratio, non-orthogonality,
and skewness. For this case all check out OK, so we are free to proceed knowing the mesh is of
high quality.

Sometimes it is not possible to create a mesh without any high aspect ratio, non-
orthogonal, or skewed cells. In fact, most meshes created will contain bad cells, and nin fine.
However, at some point (which is not quantitatively clear) the mesh will be so poor it either
won't run, or it will take a long time to run. There aren't exact guidelines on OpenFOAM mesh
quality; it simply takes experience running various meshes.

constant/ directory and the createPatch Command

All of the mesh geometry- details are stored in the constant/poly Mesh directory. The
boundary file is typically the only one in polyMesh directory that gets edited.

Now open up your constant/polyMesh/boundary file, which contains all of the
information for surfaces that were imported from your mesh. It should look like the screen
capture seen below.

The information at the top of the file (under the FoamFile header) gives a description of
the file (version, format, class, etc.) and is most likely only useful to more experienced users, but
at the very least it is always useful as a label to let you know where you are. Further down the
file you can see that 7 surfaces (bow, midbody, etc.) were imported with the same boundary
names that were created in Gridgen. Each surface is described by the type of OpenFoam surface,
nFaces and startFace. Only the type is of concern to the user at this stage and that will be
discussed in more detail later on.

89

V
FoanFile

{

ft

7
(

\\ /

w

C++

/ F ield I OpenFOAM: The Open Source CFD Toolbox
0 peration | Version: 1.5-dev
A nd | Revision: exported
M anipulation | Web: http://www.OpenFOAM.org

-"\

version 2.0:
fornat ascii;
class polyBoundaryHesh:
location "constant/polyMesh"
object boundary:

o

bow

{
type
nFaces
startFace

idbody

type
nFaces
startFace

type
nFaces
startFace

arfield

type
nFaces
startFace

nlet

type
nFaces
startFace

outlet

type
nFaces
startFace

synnetry

type
nFaces
startFace

II

wall;
6712;
4994928;

wall:
11432;
5001640;

wall:
22432;
5013072;

patch;
1778;
5035504;

patch;
442;
5037282;

patch;
442;
5037724;

symietryPlane;
68678;
5038166;

Often times the boundary file needs to be altered from what is originally created during
the import process. For example, the hull might be imported as 5 different surfaces and you

90

would like to group them together as one surface. For this case we will group the separate hull
surfaces together to avoid redundancy and make life easier.

To group separate surfaces together, we use the createPatch command. For now let's say
that we want to create a group of surfaces for what will be the hull. The file that allows us to
group surfaces is called createPatchDict and it is located in the system directory.

If you open your system/createPatchDict file you will notice that it needs to be edited to
group the surfaces from constant/polyMesh/boundary. Again, there is detailed information about
this dictionary file underneath the FoamFUe header, and can be used as a reference to the user.
Underneath the FoamFUe section are the matchToTolerance and pointSync commands which
are not important right now and should be left as is. Next, you will see a patches section, which
is where we will do our editing to join surfaces under one boundary name and type.

The user should edit their createPatchDict file patchesQ section to look like the screen
capture on the next page. The only patch will group the hull, midbody, and stern surfaces into
one boundary named hull, and this new boundary will remain a type wall.

Now we are ready to combine the surfaces, but first it is generally a good idea to copy
our constant directory before we combine our surfaces, so there is always a reference. So for
Linux users, simply:

>> cp -r constant origconstant

to copy our reference constant folder to orig_constant. Then in the case directory enter
"createPatch" in the command line. The resulting screen dump should look like the following
screen capture.

91

0
\\ / F ield
\\ / 0 peration
\\ / A nd
\\/ M anipulation

OpenFOAM: The Open Source CFD Toolbox
Version: 1.0
Web: http://www.openfoan.org

- /

FoanFile
1

version
fornat

2.0;
ascii;

root
case
instance
local

"body 1";

class
object

dictionary;
createPatcheDict

II * * * ***** //

// Tolerance used in matching faces. Absolute tolerance is span of
// face tines this factor.
natchTolerance 1E-3;

// Do a synchronisation of coupled points.
pointSync true;

// Patches to create.
// If no patches does a coupled point and face synchronisation anyway.
patches
(

!
nane hull;

type wall;

constructFron patches;

patches (bow nidbody stern);

):

// -**•** V **-* ir*****<r***»4 ir***i****** + **********+*W**** fr*** + + ******* ***** //

92

[delaneykQanazon bodyl_Tutorial]$
[delaneyk'Sanazon bodyl_Tutorial]£ createPatch
/•

V
Exec : createPatch
Date : Apr 08 2010
Tine : 15:46:37
Host : anazon.dt.navy.nl
PID : 21526
Case : /san/hone/delaneyk/NavyF0AM-1.5-dev-rev995/delaneyk-l.5-dev/run/bodyl/bounding!
nProcs : 1

\\ / F ield
\\ / 0 peration
\\ / A nd
\\/ M anipulation

OpenFOAM: The Open Source CFD Toolbox
Version: 1.5-dev
Revision: exported
Web: http://wwv.OpenFOAM.org

Create tire

* * * + * * * * * * •*
•7

—> FOAM Warning :
From function dlLibraryTable::open(const fileNane& functionLibNane)
in file db/dlLibraryTable/dlLibraryTable.C at line 86
could not load /san/hone/delaneyk/NavyFOAM-1.5-dev-rev995/NavyF0AM/lib/linux64CccDP(

e8RASModelllprintCoeffsEv
Reading createPatchDict.

Using relative tolerance 0.001 to natch up faces and points

Create polyMesh for tine = 0

Adding new patch hull of type wall as patch 7

Moving faces fron patch bow to patch 7
Moving faces fron patch nidbody to patch 7
Moving faces fron patch stern to patch 7

Doing topology nodification to order faces.

Synchronising points.
Points changed by average:0 nax:0

Renoving patches with no faces in then.

Renoving enpty patch bow at position 0
Renoving enpty patch nidbody at position 1
Renoving enpty patch stern at position 2
Renoving patches.
—> FOAM Warning :

Fron function forces::forces(const objectRegistryA obr, const dictionary* diet)
in file forces/forces.C at line 78
No fvMesh available, deactivating.

Writing repatched nesh to 1

End

93

You will notice that the second to last line states "Writing repatched mesh to /". The
createPatch command will write the new patched surface information into a directory whose
name is the first time step output of your future run, which in this case is //.

So now you need to get rid of the old constant directory and move the new //directory to
constant In Linux this would be accomplished by:

» mv constant origconstant

» mv 1 constant

Now the transportProperties and RASProperties files need to be placed in the constant
directory. The transportProperties and RASProperties files must ALWAYS be present in the
constant directory when using simpleFoam. In Linux this would be accomplished by:

» mv transportProperties constant/

» mv RASProperties constant/

Open the constant/polyMesh/boundary file and you will see that the three patches are
now grouped together in the hull patch.

Now we have the geometry imported and named as we want for the run. A good next step
is to export the geometry into a visual package (EnSight, ParaView, etc.) and make sure that all
surfaces are grouped and labeled correctly. To export the geometry, use foam ToEnsight for
EnSight, foamToVTK for ParaView, and no additional command is needed for ParaFoam. So
now take a minute or two and inspect your geometry in your package of choice. Your geometry
should look like the Figure below, with the appropriate surface labels in the post-processor.

94

Material Properties

The next step is to set up the material properties for the fluid. For the simpleFoam solver,
only the kinematic viscosity is required in the constant/transportProperties dictionary file. Open
the transportProperties file, it should look like the screen capture below. No editing is necessary,
just note that kinematic viscosity is always set in transportProperties.

\\ /
\\ /

I F ield
0 peration
A nd
H anipulation

OpenFOAM: The Open Source CFD Toolbox
Version: 1.3
Web: http://vonv.openfoan.org

V

FoanFile

{
version
format

root
case
instance

local

class
object

2.0;
ascii;

"constant";

dictionary:
transportProperties;

// It

transportModel Newtonian;

nu

)

//

nu [0 2 -1 0 0 0 0] 1.515le-7;

************* *** // ***********ft***************************4**********4****4

The kinematic viscosity, nu, is entered in as:

/;// nu [02-1000] 1.515le-7;

where [0 2-1 0 0 0 0] sets the units based on [Mass Length Time Temperature Quantity Current
Luminous intensity]. The kinematic viscosity dimensions are Lengths/Time or in SI units: ms/s.
The value of the kinematic viscosity is set to I/Re where the Reynolds number is 6.6M (L = U =
1.0). Remember that this value must always be consistent with the Reynolds number.

Re = UL/nu

0/ directory (Initial and Boundary Conditions)

Now we turn our attention to the initial and boundary conditions, which are stored in the
0/ directory.

For the icoFoam solver only U andp files are needed in the 0/ directory.

Open the 0/U file; it should look like the screen capture on the following page.

In the 0/U file notice:

Uis a vector field quantity. All (/values must be set in vector format, (XXX).

95

The U dimensions must match the variable by M,L,T\... so velocity is [01-100 0 0]

The internal Field sets the initial flow field condition for U. For this case the fluid is
initially at free stream everywhere (Ux=l and Uy,Uz = 0)

The boundary Field sets velocity boundary conditions for ALL surfaces. All surfaces
must be included with proper BC's. All surface names must match the
constant/poly Mesh/boundary surface name exactly. The order of surfaces is not important, but
the names must match identically.

The velocity boundary conditions for the five surfaces are as follows:

The hull is set with

type fixed Value;

value uniform (0 0 0);

to apply the no-slip boundary condition to the walls.

Jhefarfield is set with

type zeroGradient;

to apply a zero velocity gradient at the farfield boundaries.

The inlet is set with

type fixed Value;

value uniform (1 0 0);

for inflow velocity of Ux=l.

The outlet is set with

type zeroGradient;

to apply a zero velocity gradient at the outlet boundary.

The symmetry is set with

type symmetry Plane;

All symmetry plane boundary conditions need to have type symmetry Plane.

Again, the order of the surfaces in the 0/... files doesn't matter, but the names and types
MUST be consistent with those listed in the constant/polyMesh/boundary file.

96

I \\ / F ield
| \\ / 0 peration
I \\ / A nd
I \\/ M anipulation
*

OpenFOAN: The Open Source CFD Toolbox
Version: 1.5-dev
Web: http://www.OpenFOAM.org I

I
•V

FoamFile
{

version 2.0;
format ascii;
class volVectorField;
location "0":
object U;

}
// * * * * it * ******** ******* //

dimensions [01-10000]

internalField uniform (1 0 0);

boundaryField
{

hull

type
value

arfield

type

inlet

type
value

outlet

type

symmetry-

type

fixedValue;
uniform (0 0 0);

zeroCradient;

fixedValue;
uniform (10 0);

zeroCradient;

symmetryPlane;

// ***

97

Now open the 0/p file, it should look like the screen capture below.

In the 0/p file notice:

p is a scalar field quantity. All p values must be set as a scalar, X, value.

Thep dimensions must match the variable by M,L,T,... so pressure is [02-2000 0],
because in icoFoam p is actually the pressure divided by the density, thus the SI units would be
m7s".

The internal Field sets the initial condition for/?. For this case (and most others) we do
not care about the absolute value of the pressure, p, so we just set it to 0 for ease.

The boundary Field sets pressure boundary conditions for ALL surfaces. All surfaces
must be included with proper BC's that are consistent with the constant/polyMesh/boundary
surfaces.

The pressure boundary conditions for the five surfaces are as follows:

The hull is set with

type zeroGradient;

for the no slip wall.

The farfield is set with

type zeroGradient;

to apply a zero pressure gradient at the farfield boundaries.

The inlet is set with

type zeroGradient;

to apply a zero pressure gradient at the inlet boundary.

The outlet is set with

type fixed Value;

value uniform 0.0;

to set a reference pressure boundary at the outlet.

Note: At least one boundary in all domains must have a set pressure.

The symmetry is set with

type symmetry Plane;

All symmetry plane boundary conditions need to have type symmetryPlane.

98

0
\\ / F ield
\\ / 0 peration
\\ / A nd
\\/ H anipulation

*

FoamFile
{

version
format
class
location
object

}
// ******

dimensions

internalField

boundaryField
{

hull

 _ C++ _

OpenFOAM: The Open Source CFD Toolbox
Version: 1.5-dev
Web: http://www.OpenFOAM.org

•*\

2.0;
ascii;
volScalarField;
"0":
p:

[02-20000];

uniforn 0;

* * * * * * * //

type

:arfield

type

inlet

type

outlet

type
value

ymmetry

type

zeroGradient;

zeroGradient;

zeroGradient;

fixedValue;
uniform 0.0;

symmetryPlane;

99

Now open the 0/nuTilda file, it should look like the screen capture below.

In the 0/nuTllda file notice:

nit Tilda is a scalar field quantity. All nu Tilda values must be set as a scalar, X, value.

The nu Tilda dimensions must match the variable by M,L,T,... so viscosity is [0 2 -1 0 0
0 0], thus the SI units would be m2/s.

The infernal field sets the initial condition for nu Tilda. For this case it is set to le-8,
which is ~10% of the kinematic viscosity.

The boundary Field sets nu Tilda conditions for ALL surfaces. All surfaces must be
included with proper BC's that are consistent with the constant/poly Mesh/boundary surfaces.

The nuTilda boundary conditions for the five surfaces are as follows:

The hull is set with

type fixedValue;

value uniform 0;

for the no slip wall.

Thefarfield is set with

type zeroGradient;

to apply a zero nuTilda gradient at the farfield boundaries.

The inlet is set with

type fixedValue;

value uniform le-8;

to set 10% of the kinematic viscosity at the inlet boundary.

The outlet is set with

type zeroGradient;

to apply a zero nuTilda gradient at the outlet boundary.

The symmetry is set with

type symmetry Plane;

All symmetry plane boundary conditions need to have type symmetryPlane.

100

\\ / F ield
\\ / 0 peration
\\ / A nd
\\/ M anipulation

 _ C++ -

OpenFOAM: The Open Source CFD Toolbox
Version: 1.5-dev
Web: http://www.OpenFOAH.org

•A

-•/
FoanFile
(

version
format
class
location
object

2.0;
ascii;
volScalarField;
"0";
nuTilda;

)
// * * *

dimensions [02-10000];

internalField uniform le-08;

aoundaryField

{
hull

******************* //

type fixedValue;
value uniform 0;

farfield

type zeroCradient;

inlet

type fixedValue;
value uniform le-08;

outlet

type zeroCradient;

symmetry

type syiunetryPlane;

••/
*** //

101

Now open the 0/nut file, it should look like the screen capture on the next page.

This file is required by the simpleFoam solver when the Spalart-Allmaras turbulence
model is used, but its turbulent viscosity input values are not used in the calculations. It is most
likely a bug in the code. Nonetheless, valid types and path names are required in the nut file.

In the 0/nut file notice:

nut is a scalar field quantity. All nut values must be set as a scalar, X, value.

The nut dimensions must match the variable by M,L,T,... so viscosity is [0 2 -1 0 0 0 0].
thus the SI units would be m"/s.

The intemalField sets the initial condition for nut. For this case it is set to le-6, this
value is not important to the calculation, so this is simply a general ballpark value.

The boundary I-icld sets nut conditions for ALL surfaces. All surfaces must be included
with proper BC's that are consistent with the constant/polyMesh/boundary surfaces.

The nut boundary conditions for the five surfaces are as follows:

The hull is set with

type zeroGradient;

to apply a zero nut gradient at the no slip boundary.

The farfield is set with

type zeroGradient;

to apply a zero nut gradient at the farfield boundaries.

The inlet is set with

type fixedValue;

value uniform le-6;

to set turbulent viscosity at the inlet boundary.

The outlet is set with

type zeroGradient;

to apply a zero nut gradient at the outlet boundary.

The symmetry is set with

type symmetry Plane;

All symmetry plane boundary conditions need to have type symmetry Plane.

102

\\ / F ield
\\ / 0 peration
\\ / And
\\/ M anipulation

 _ C++ -

OpenFOAM: The Open Source CFD Toolbox
Version: 1.5-dev
Web: http://www.OpenFOAM.org

-*\

*/
oanFile

version 2.0;
fornat ascii;
class volScalarField
location "0";
object nut;

}

dimensions [02-10000];

internalField uniform le-06;

aoundaryField
{

hull

type

farfield

type

inlet

type
value

outlet

type

symmetry

type

***** //

zeroGradient;

zeroGradient;

fixedValue;
uniform le-06;

zeroGradient;

symmetryPlane;

system/ directory (Solver Settings)

Now we will look at some of the solver settings and controls that are located in the
system/ directory. We will focus on the controlDict, fvSolution, fvSchemes, and
decomposeParDict files. We already used the createPatchDict to merge multiple surfaces.

Open the system/controlDict dictionary file. It should look like the screen capture below.
The controlDict file sets all of the run-time parameters and output information. This is also

103

where run-time libraries and functions, such as force outputs over a patch and dynamic mesh
libraries are specified.

n. .\

v

// FoamX Case Dictionary.

FoamFile
{

\\ / F ield
\\ / 0 peration
\\ / And
\\/ M anipulation

OpenFOAH: The Open Source CFD Toolbox-
Version: 1.3
Web: http://www.openfoan.org

-'/

version
format

2.0;
ascii;

root
case
instance
local

"tutorial";
"bodyl";
"system";

c lass
object

}

dictionary;
controlDict;

//•••**•• ***************************

libs ("libnavyF initeVolume.so" "libnavylncompressibleRASModels.so");

application simpleFoam;

startFrom startTime;

startTime 0;

stopAt endTime;

endTime 1500;

deltaT 1 :

writeControl timeStep:

writelnterval 500;

purgeWrite 0;

writeFornat ascii;

//

writeFrecision 6;

writeCompression compressed;

timeFormat general;

timePrecision 6;

graphFormat raw;

runTimeHodifiable yes:

(Screen capture continued on next page...)

104

functions
(

forces_Hull
{

type forces;

//Library to load
functionObjectLibs ("libforces.so");

//Name of patch to integrate forces over
patches (hull);

//Reference density for fluid - can be changed later ...
rholnf 1.0;

//Origin for moment calculations
CofR (0 0 0):

}

>:

[7/ *************************•»***+************************** + *•»************** //

At the top, finite volume and turbulence model libraries are dynamically loaded by
libs("..");.

The solver specified in application input does not matter. The solver is specified on the
command line or in a script file. Thus, this is an insignificant line for our purposes.

The solver settings are fairly obvious, and more detail is provided on page U-108 of the
User's Guide (http://foam.sourceforge.net/doc/Guides-a4/UserGuide.pdf). For now we will only
cover a broad view of the file.

We know that simpleFoam is a steady solver. Thus the solver will artificially iterate in
"time", where 1 second is an iteration. Here we see that the solver start from startTime = 0, and
will iterate in steps of deltaT= 1 until endTime = 1500. The data will be written in ASCII format
in directories according to writelnterval. Notice that runTimeModifiable is chosen to yes, this
means that we can make changes to the controlDict in the middle of a run, and they will be
adjusted on the fly, as opposed to having the settings set in stone for the whole calculation.

One important note is that to start a calculation from a previous solution the startFrom
entry must be switched to latestTime, and desired start time information (directory and BC's)
must be present in the case directory. We will delve into this further later on.

Now open the system/fvSolution dictionary file. It should look like the screen capture on
the next page.

105

w- -*\

I \\ / F ield
I \\ / 0 peration
I \\ / A nd
I \\/ H anipulation v

OpenFOAM: The Open Source CFD Toolbox
Version: 1.4
Web: http://www.openfoan.org

Fo amFile
{

version 2.0;
format ascii;

root it n

case H ••

instance
local

class dictionary:
object fv! Solution:

// * * * -k * * * * u
solvers

(

P PCG
(

preconditioner DIC;
tolerance le-7;
relTol 0.01;
ninlter 1;
naxlter 200;

}

li PBiCG

(
preconditioner DILU;
tolerance le-07
relTol 0.0;

)
ninlter 1:

nuTilda PBiCG

{
preconditioner DILU;
tolerance le-08
relTol 0.01;
ninlter 1:

I

SIMPLE
(

nNonOrthogonalCorrectors 0;
pRefCell 0;
pRefV'alue 0;

)
(Screen capture continues on the next page...)

106

relaxationFactors

{
P 0.3
U 0.4
nuTilda 0.4
k 0.4
onega 0.4

ThefvSolution file contains linear solver information as well as solver algorithm settings.

The solvers section contains linear solver settings for pressure, velocity, and turbulent
viscosity. Note that for this case we are using preconditioned conjugate gradient solvers {PCG
for symmetric matrices and PBiCG for asymmetric matrices), but we also commonly use multi-
grid solvers (GAMG, AAMG, etc.). The solver tolerance and relative tolerance settings are not
important right now. The minlter command sets a minimum number of times the linear solver
will iterate on a variable. It is usually recommended that the user always set a minimum number
of iterations > 0 to prevent the solver from prematurely not solving for a variable (we
recommend minlter =1).

Below the solvers section are SIMPLE algorithm control settings. These SIMPLE
settings are not particularly useful to the user at this time, so only a broad view of what each
setting means is given. Also, note that the PISO algorithm must be used for all transient solvers
and the SIMPLE algorithm must be used for all steady-state solvers. For this case we have
nNonOrthogonalCorrectors set to 0, which means that we will not solve the pressure equation
more than once per iteration. Note for future runs, if the pressure residuals are increasing and the
solution is diverging/blowing up, nNonOrthogonalCorrectors can be increased to iterate the
pressure equation more and may lead to successful solution convergence. Notice that we have set
cell number 0 as our reference cell, where the reference value is 0. This is the reference pressure
for the incompressible solver.

Finally, the relaxationFactors section is where under-relaxation factors for each variable
are specified. Typical pressure values are 0.1-0.4 and typical velocity and turbulence quantity
values are 0.4-1.0. Higher values correspond to quicker solution advancement, but will be more
unstable (greater chance of solution divergence).

Now open the system/fvSchemes dictionary file. It should look like the screen capture
below.

107

0
I W / F ield
| \\ / 0 peration
I \\ / A nd
| \\/ M anipul.it ion

-*\

OpenFOAM: The Open Source CFD Toolbox
Version: 1.3
Web: http://www.openfoan.org

Fo anFile
{

version 2.0:
format ascii;

root >
case •in.

instance "system";
local

class dictionary
object fvSchenes;

// * * * ********************************** //

ddtSchenes

{
default steadyState;

gradSchenes

default Gauss linear;

I

divSchemes

(
default

div(phi.U)
div(phi.nuTilda)
div((nuEff*dev(grad(U) .T())))

Gauss linearUpwind cellLinited Gauss linear 1.0:
Gauss upwind;
Gauss linear;

laplacianSchenes

{
default Gauss linear corrected;

interpolationSchenes

{
default linear:

snGradSchemes

(
default

1
corrected;

fluxRequired

{
default

p:
}

no;

108

Many of the fvSchemes settings are not particularly useful to the user at this time, so only
a broad view of the settings is given here. For more detail on these settings consult page U-l 10
of the User's Guide.

The fvSchemes file sections declares the following settings:

ddt -> time discretization

gradSchemes -> gradient term discretizations

divSchemes -> divergence terms discretization

laplacianSchemes -> Laplacian terms discretization

interpolationSchemes -> interpolation of values from cell centers to cell face centers

snGradSchemes -> surface normal gradient evaluation at cell faces

JluxRequired -> lists fields where flux is generated in the application

Some fvSchemes notes:

(1) Because simpleFoam is a steady solver ddtSchemes default is set to steadyState.

(2) The div(phi,U) term is the convective velocity term, and "Gauss UnearUpwind
cell Limited Gauss linear 7.0" corresponds to 2nd order upwind.

(3) The div(phi, nuTilda) term is the convective turbulent viscosity term, and "Gauss
upwind" corresponds to 1sl order upwind.

(4) The div((nuEff*dev(grad(U).TQ))) term requires a gradSchemes input, but is placed
in divSchemes. This is probably a bug.

For all of the fvSchemes fields a default value can be specified and only exceptions to the
default setting would need to be specified, or default can be set to none which means that the
user must enter all values for the appropriate variables themselves.

Now open the system/decomposeParDict dictionary file. It should look like the screen
capture on the next page.

There is a lot in the decomposeParDict that is beyond the scope of this tutorial, but the
important thing to notice is that the mesh will be split into 12 partitions (numberOfSubdomains
12;) using the metis method.

The number of 1 's in the metisCoeffs -> processorWeights section must match the
number in numberOfSubdomains.

109

3* *\

\\ / F ield
\\ / 0 peration
\\ / A nd
\\/ M anipulation

OpenFOAM: The Open Source CFD Toolbox
Version: 1.3
Web: http://www.openfoam.org

v* v

FoanFile

{
version 2.0;
format ascii;

root «• M

case II II

instance III!

local

class dictionary;
object de< romposeParDict

// * * * * ********* ***** * * * * //

nunberOfSubdonains 12;

nethod net is;

sinpleCoeffs
(

n
delta

}

(2 2 1);
0.001;

lierarchicalCoeffs
(

n
delta
order

!

(1 l l);
0.001;
xyz;

netisCoeffs
I

processorWeights
(

111111111111
);

I

nanualCoeffs
{

dataFile

distributed no;

'/ ** * //

10

Next execute the settings from decomposeParDict by entering "decomposePar" on the
command line.

Upon completion of the domain decomposition, your directory will have twelve new fdes
{processorO -> processorl/), which all correspond to the decomposed domain. Your case
directory should look like the screen capture below.

[delaneykQamazon bodyl_Tutorial]$ 1
total 237M
-rw-r—r— J delaneyk users 237M Apr 8 15 31 bodyl_Box-ASCII.fluent.cas
drwxr-xr-x 3 delaneyk users 21 Apr 8 15 49 orig_constant
drwxr-xr— 2 delaneyk users 46 Apr 8 16 41 0
drwxr-xr-x 3 delaneyk users 14 Apr 8 16 45 forces_Hull
drwxr-xr-x 3 delaneyk users 67 Apr 8 16 47 constant
drwxr-xr-x 2 delaneyk users 102 Apr 8 16 50 system
-rw-r—r— 1 delaneyk users 650 Apr 8 16 51 oFOAM.scp
drwxr-xr-x 4 delaneyk users 29 Apr 8 16 52 processorO
drwxr-xr-x 4 delaneyk users 29 Apr 8 16 52 processorl
drwxr-xr-x 4 delaneyk users 29 Apr 8 16 53 processor2
drwxr-xr-x 4 delaneyk users 29 Apr 8 16 53 processor3
drwxr-xr-x 4 delaneyk users 29 Apr 8 16 53 processor4
drwxr-xr-x 4 delaneyk users 29 Apr 8 16 53 processors
drwxr-xr-x 4 delaneyk users 29 Apr 8 16 S3 processor6
drwxr-xr-x 4 delaneyk users 29 Apr 8 16 53 processor?
drwxr-xr-x 4 delaneyk users 29 Apr 8 16 53 processor8
drwxr-xr-x 4 delaneyk users 29 Apr 8 16 53 processor9
drwxr-xr-x 4 delaneyk users 29 Apr 8 16 S3 processorlO
drwxr-xr-x 4 delaneyk users 29 Apr 8 16 S3 processorll
[delaneykOa nazon bodyl. .Tutorial]$

Running the Case

We are now ready to run our case. To execute this case on a cluster a script file is needed.
For example purposes the script fde oFOAM.scp is shown below.

Notice that the 12 partition mesh will be run on 3 nodes with 4 processors per node. The
application simple Foam is also specified in this file.

-It is now time to run the job, so in this case we type:

>>qsub oFOAM.scp

into the command line. A file named log will contain all of the run information that would
normally be output in a screen dump.

Remember that at the bottom of our controlDict file, we specified a function named
forcesHull of type forces. This file calculates forces over the patch specified by patches (hull
in our case), and places them in a directory named forcesHull under a time file name that
corresponds to startTime.

Now let the file run out until its endTime of 1500 iterations.

Ill

gPBS -j oe
#PBS -o ./amazon.out
#PBS -e ./amazon.err
#PBS -S /bin/csh
#PBS -N SA_bl
#PBS -1 nodes=3:ppn=4
#PBS -1 walltine=42:00:00
#PBS -V
echo "cd to the directory"
cd 1>PBS_0_W0RKDIR

setenv OPENFOAM_NP 12

echo "define parameters in exec statement'

set APPLICATION="simpleFoam"
set R0OT="."
set CASE="Body_l_Tutorial"

echo "The current shell is SSHELL"
SOPENFOAM_NP"
^APPLICATION SROOT SCASE'
*FBS_0_WORKDIR"

echo "Number of processors
echo "Executing
echo "Working directory
echo "The shell limits are
limit
echo "Starting executable...."

mpirun -machinefile $PBS_NODEFILE -np $OPENFOAM_NP ^APPLICATION -parallel > ./log

After the case has completed, by running 1500 iterations open up the forces_Hull/l file.
Let's just say for tutorial purposes that the forces have not converged to our satisfaction, and we
want to run the case out further for an additional 2500 iterations.

To restart the case make the following changes in the system/control Diet fde:

(1) Change: startFrom startTime; •> startFrom latestTime;

(2) Change: endTime 1500; -> endTime 4000;

-Now restart the calculation with

»qsub oFOAM.scp

Notice that the log file will be written over (so make a copy in the future if you wish to
keep the original log file). Also notice that forces are now being output under forces/1501 file,
and the original forces are still kept under forces/1.

Let the case run out to completion after 4000 iterations.

Now open the log file. Some observations:

You can see that the solver started from time equal to 1500 and iterated until 4000.

For each iteration the momentum equation (Ux, Uy, and Uz) is solved first, then the
continuity equation (p), and finally the turbulent quantity (nuTilda).

112

For each variable linear solver we can see the initial residual, final residual, and the
number of iterations it took to drop from the initial to the final residual. We set all of these
tolerances and iteration criteria in the system/fvSolution dictionary file.

There are also continuity error reports.

The best way to typically monitor the solution is to make sure that the velocity magnitude
stays at a reasonable number, and make sure that initial pressure residuals are decreasing or are
holding steady at an acceptable value.

The last line of the time iteration produces execution and clock time information. This is
useful in gauging the efficiency of your solution.

Post-Processing

Notice that there are many time directories in your processor directories. Each of these
directories contains output information for their respective time step.

To reconstruct the data from the decomposed processors use the command

>> reconstructPar -latestTime

The -latestTime means only reconstruct the last time in the processor* files. The
command -time timett will reconstruct for a specific time (timett) only. If only reconstructPar is
specified, then all time directories in the processor* files will be reconstructed.

To look at the post-processed results simply type the following commands, depending on
the post-processing tool of choice:

»foamToEnSight -latestTime -> to look at the results in EnSight

» foamToVTK -latestTime -> to look at the results in Para View

where the command -latestTime is used to only look at the results from the last output time step.
To look at the results for all time steps simply leave off the -latestTime command, and to look at
the results for a specific time (i.e. 0.005) use -time 0.005.

To look at the results in ParaFoam, no additional commands are needed, simply open
ParaFoam in the case directory.

Your results should look like the axial velocity ((7.x) and pressure (Press) contours below.

113

114

Appendix E: ransFSNavyFoam Wigley Hull Tutorial

This tutorial involves using the turbulent, transient, incompressible, multi-phase solver
for the Wigley hull. Although this is a transient solver, this case will NOT be run time accurate.
Only half the body is solved, as symmetry is assumed. First, we will go over pre-processing and
case setup, then we will run the test case, and finally we will look at some post-processed results.

For more detailed information on the OpenFOAM code and settings consult the User's
Guide: http://foam.sourceforge.net/doc/Guides-a4/UserGuide.pdf.

Pre-Processing and Case Setup

Your initial directory should look like the screen capture below.
total 4.OK
drwxr-xr-x 3 delaneyk users 128 Jul 13 14:50 constant
drwxr-xr-x 2 delaneyk users 100 Jul 13 14:50 system
drwxr-xr-x 2 delaneyk users 72 Jul 13 14:50 0
-rw-r--r— 1 delaneyk users 646 Jul 13 14:50 oFOAM.scp

constant/ directory

In the previous tutorials the mesh needed to be imported into OpenFOAM from a 3rd

party mesh generator. However, for this case the mesh has already been imported, so you will
notice the polymesh/ folder is already present in the constant/ directory. Open up your
constant/polyMesh/boundary file, it should look like the following screen capture. Notice that
the hull surface is of type wall (viscous surfaces must always be of type wall), the centerplane is
of type symmetry Plane (symmetry planes must always be of type symmetry Plane), and the rest
of the surfaces are of type patch.

115

n. C++ .\

\\ / F ield
\\ / 0 peration

\\ / And

I OpenFOAM: The Open Source CFD Toolbox
I Version: 1.5.x
I Web: ht tp://www.OpenFOAM.org

V —
FoanFile

\\/ M amputation I

//
7

version 2.0;
fornat ascii;
class polyBoundaryMesh;
location "constant/polyHesh"
object boundary;

hull

type
nFaces
startFace

}
centerplane

(
type
nFaces
startFace

)
bottom

(
type
nFaces
startFace

)
farfield

{
type
nFaces
startFace

}
top

(
type
nFaces
startFace

1
inlet

(

I

type
nFaces
startFace

outlet

type
nFaces
startFace

)

wall;
3074;
762555:

symmetry-Plane;
5858;
765629;

patch;
3364;
771487;

patch;
8932;
774851;

patch;
3364;
783783;

patch;
2233;
787147;

patch:
2233;
789380;

 V

ft

i************ * ********************************* ft************************* ft

Now run the checkMesh command for two reasons:

1. to make sure the mesh was imported correctly

116

2. to asses the quality of the mesh for the OpenFOAM solver

Your checkMesh output should look like the screen captures on the next pages.

\\
\\ /
\\ /
W

*
Exec
Date
Tine
Host
PID

Case
nProcs

Create time

[delaneykQanazon wigley_tutorial]$ checkMesh

-•\

F ield I OpenFOAM: The Open Source CFD Toolbox
0 peration I Version: 1.5-dev
A nd I Revision: exported
M anipulation I Web: http://www.OpenFOAM.org

-'/
checkMesh
Jun 21 2010
10:56:06
amazon.dt.navy.nil
29416
/san/hone/delaneyk/NavyF0AM-l.S-dev-rev995/delaneyk-1.5-dev/run/wigley/tutorial/»(igley_tutorial
1

* + * * U

~> FOAM Warning :
From function dlLibraryTable::open(const fileNameA functlonLibName)
in file db/dlLibraryTable/dlLibraryTable.C at line 86
could not load /san/hone/delaneyk/NavyFOAM-1.S-dev-rev99S/NavyF0AM/lib/linux64GccDPOpt/libnavyFiniteV

olume.so: undefined symbol: _ZN4Foam6upwindIdE8typeNaneE
> FOAM Warning :

From function dlLibraryTable::open(const fileName* functionlibNane)
in file db/dlLibraryTable/dlLibraryTable.C at line 86
could not load /san/home/delaneyk/NavyFOAM-1.5-dev-rev99S/NavyF0AM/lib/linux64CccDP0pt/libnavyIncompr

essibleRASModels.so: undefined symbol: _ZN4Foaml4incompressible8RASModelllprintCoeffsEv
Create polyMesh for time = constant

Time - constant

Mesh stats
points: 273780
faces: 791613
internal faces: 762555
cells: 259028
boundary patches: 7
point zones: 0
face zones: 0
cell zones: 0

Number of cells of each type:
hexahedra:
prisms:
wedges:
pyramids:
tet wedges:
tetrahedra:
polyhedra:

259028
0
0
0
0
0
0

Checking topology...
Boundary definition OK.
Point usage OK.
Upper triangular ordering OK.
Face vertices OK.
Number of regions: 1 (OK).

Checking patch topology for multiply connected surfaces ...
Patch Faces Points Surface topology-
hull 3074 3186 ok (non-closed singly connected)

17

centerplane 58 S8 6105
bottom 3364 3510
farfield 8932 9126
top 3364 3510
inlet 2233 2340
outlet 2233 2340

ok (non-closed singly connected)
ok (non-closed singly connected)
ok (non-closed singly connected)
ok (non-closed singly connected)
ok (non-closed singly connected)
ok (non-closed singly connected)

Checking geometry...
This is a 3-D mesh
Overall domain bounding box (-4 -9.40395e-38 -4) (12 8 1.2)
Mesh (non-empty) directions (1 1 1)
Mesh (non-empty, non-wedge) dimensions 3
Boundary openness (-2.25653e-16 -6.20107e-16 -3.37491e-16) Threshold = le-06 OK.
Max cell openness = 3.23887e-16 OK.

Max aspect ratio = 750.787 OK.
Minimum face area = 7.99769e-06. Maximum face area = 1.44004. Face area magnitudes OK.
Min volume = 3.21742e-08. Max volume = 1.44. Total volume = 664.872. Cell volumes OK.
Mesh non-orthogonality Max: 78.8601 average: 12.7201 Threshold = 70
Number of severely non-orthogonal faces: 18.

Non-orthogonality check OK.
<<Writing 18 non-orthogonal faces to set nonOrthoFaces

Face pyramids OK.
Max skewness = 1.46173 OK.

Mesh OK.

End

You will notice that there are 18 "severely non-orthogonal faces." As has been mentioned
in previous tutorials, OpenFOAM's checkMesh is very harsh. Sometimes it is not possible to
create a mesh without any high aspect ratio, non-orthogonal, or skewed cells. In fact, most
meshes created will contain bad cells, and run fine. However, at some point (which is not
quantitatively clear) the mesh will be so poor it either won't run, or it will take a long time to
run. There aren't exact guidelines on OpenFOAM mesh quality; it simply takes experience
running various meshes.

Another good initial step is to export the geometry into a visual package (EnSight,
ParaView, etc.) and make sure that all surfaces are grouped and labeled correctly. To export the
geometry, use foamToEnsight for EnSight, foamToVTK for ParaView, and no additional
command is needed for ParaFoam. So now take a minute or two and inspect your geometry in
your package of choice. Your geometry should look like the pictures on the next page, with the
appropriate surface labels. This mesh is meant for instructional purposes only as you will notice
that the mesh is very coarse.

118

Entire Domain:

The constant/RASProperties file is the same as in the previous tutorials and will not be
covered here.

Open the constant/transportProperties file, it should look like the screen capture below.
No editing is necessary. However, notice that the multi-phase solver requires density (rho) and

119

kinematic viscosity (nu) for both the water (phase 1) and the air (phase 2). Additionally the
surface tension (sigma) is input at the bottom. The surface tension could probably be neglected
for this case of a surface ship (sigma - 0.0), but it must always be included at the bottom of the
transportProperties file.

0* »N

\\ / F ield
\\ / 0 peration
\\ / A nd
\\/ M anipulation

OpenFOAH: The Open Source CFD Toolbox
Version: 1.3
Web: http://vnnw.openfoam.org

--*/

oanFile

version
format

2.0;
ascii:

root
case
instance
local

"wigley":

class
object

dictionary:
transportProperties;

/.' * * * * //

transportModel Newtonian;

phasel
I

transportModel Newtonian;
rho rho [1 -3 0 0 0 0 01 1000:
nu nu [0 2 -1 0 0 0 0] le-06:

phase2
I

transportModel Newtonian:
rho rho [1 -3 0 0 0 0 0] 1;
nu nu [0 2 -1 0 0 0 0] 1.48e-05;

•- IKH.I signa [10-20000] 0.07;

********* *** ft

The multi-phase solver also requires a constant/environmentalProperties file, which has
not been required in the previous tutorials. This file contains information on the gravity vector as
can be seen on the next screen capture. An important note for free surface flow is to make sure
that the gravity and velocity (from the 0/U file) coincide with the desired Froude number
according to the definition:

Fr =
V

For this tutorial the Wigley Hull will be run at a Froude number of 0.289, corresponding
to a Reynolds number of 905,000.

120

0.—-.
\\ / F ield
\\ / 0 peration

\\ / And
\\/ H anipulation

\.

FoarFile

{

 .\

OpenFOAM: The Open Source CFD Toolbox
Version: 1.3
Web: http://www.openfoan.org

8

version
fornat

root
case
instance
local

class
object

 ./

2.0;
ascii:

"wigley":

dictionary;
env ironnent alProperties;

g [0 1 -2 0 0 0 0] (0 0 -9.81);

ll

'.'

0/ directory!Initiul and Boundary Conditions)

Now we turn our attention to the initial and boundary conditions, which are stored in the
0/ directory. Again, many of the basic concepts stored in the 0/ directory have been covered in
previous tutorials, thus only new concepts will be covered here. However, it is worth repeating
that ALL surface names in the 0/... files must match the names from the
constant/polyMesh/boundary file.

For the ransInterNavyFoam solver with the SST k-omega turbulence model only U, k,
omega, pd, and gamma files are needed in the 0/ directory.

Open the 0/U file; it should look like the screen capture on the next page. The hull is set
to a no-slip boundary condition, the inlet, farfield, and bottom boundaries are set to slip
boundary conditions to simulate the coordinate system fixed to the hull as would be the case in
tow tank tests.

121

C++ -x 0*
\\ / F ield
\\ / 0 peration

\\ / A nd
\\/ M anipulation

\. v

FoanFile

{
version
format
class
location
object

}
//******

dimensions

internalField

boundaryField

{

OpenFOAH: The Open Source CFD Toolbox
Version: 1.5-dev
Web: http://www.OpenFOAM.org

2.0;
ascii;
volVectorField;
"0";

U:

[Oi-ioooo];

uniform (0.905 0 0):

******* * //

hull

{
type
value

enterplane

type

bottom

type
value

arfield

type
value

op

type

nlet

type
value

outlet

type

fixedValue;
uniform (0 0 0);

symmetryPlane;

fixedValue;

uniform (0.905 0 0);

fixedValue;
uniform (0.905 0 0);

zeroGradient;

fixedValue:
uniform (0.905 0 0);

zeroGradient;

// A*** *****+*+******+**+*•** * //

Both the 0/k and 0/omega files are set up similar to the previous tutorials, and should
look like the following screen captures.

122

\\ / F ield
\\ / 0 peration
\\ / A nd
\\/ M anipulation

 •- C++ -*

OpenFOAM: The Open Source CFD Toolbox
Version: 1.5-dev
Web: http://www.OpenFOAM.org

-'\

*
FoanFile
{

version
format
class
location
object

)

dimensions

internalField

boundaryField

hull

type

enterplane

type

bottom

type
value

arfield

type
value

2.0;
ascii;
volScalarField;
"O";
onega;

[00-10000];

uniform 400:

zeroCradient:

op

type
value

inlet

type
value

outlet

type

symmetryPlane;

fixedValue;
uniform 400;

fixedValue:
uniform 400:

fixedValue;
uniform 400;

fixedValue;
uniform 400;

zeroCradient;

//

// ********* 4****************4 ******** ************* ********* a

123

The multi-phase solver requires a 0/gamma file which represents the volume fraction
(gamma = 0 = air and gamma = 1 = water). The solver is using the Volume of Fluid (VOF)
method to solve for both the air and water.

Notice that all of the bottom and outlet boundaries are set to zero gradient. The top is set
to inletOutlet, which switches between a fixed value and zero gradient condition depending on
the direction of flow across the boundary. The inlet and farfield are set to the calmWater
boundary condition, which keeps the air-water interface at a constant height along the boundary.
The calmWater condition is especially important in avoiding artificial waves at the inlet and side
of the domain during mesh motion calculations. The centerplane is set to symmetry Plane.

124

*
FoanFile

\\ / F ield
\\ / 0 peration

\\ / A nd
\\/ H anipulation

 *- C++ --

OpenFOAM: The Open Source CFD Toolbox
Version: l.S-dev
Web: http://www.OpenFOAM.org

-*\

version
fornat
class
location
object

2.0:
ascii;
volScalarField;
"0";
ganma;

}
If ********************* ********** //'

dimensions

internalField

boundaryField

hull

type

centerplane

type

bottom

type

arfield

type
valueAbove
valueBelow
elevation
axis
value

[0 0 0 0 0 0 0];

uniform 0;

top

(
type
inletValue
value

zeroCradient;

symmetryPlane;

zeroCradient:

calmWater;
0:
1
()
z
uniform 0:

inletOutlet ;
uniform 0;
uniform 0;

(screen output continues on the next page...)

125

inlet
{

type
valueAbove
valueBelow
elevation
axis
value

}

outlet
{

type
1

calnWater;
0:
1
0
z
uniform 0;

zeroGradient;

w //

Now open the 0/pd file and notice that for the multi-phase solver pressure is in terms of
the variable pd, as opposed to p for the single phase solver. For the single phase solver the
pressure (p) is a relative pressure, whereas a more precise (pd) pressure is solved for in
ransFSFoam. The top and outlet have the pressure set to 0 and the rest are at zero gradient and
symmetry plane.

126

\\ / F ield
\\ / 0 peration

\\ / And
\\/ M anipulation

 . C++ -

OpenFOAM: The Open Source CFD Toolbox
Version: l.S-dev
Neb: http://wwvi.OpenFOAM.org

-V
FoanFile

(
version 2.0;
format ascii;
class volScalarField;
location "0";
object pd:

}
/ / ****************

dimensions [1 -1-20000]:

internalField uniform 0;

boundaryField

{
hull
{

type

enterplane

type

ottor

type

arfield

type

op

type
va lue

nlet

type

outlet

type fixedValue:
value uniform 0;

****** * * * * *
I!

zeroCradient;

symnetryPlane:

zeroCradient;

zeroCradient;

fixedValue:
uniform 0;

zeroCradient;

// *************i ** It

System/ Folder (Solver Settings)

Now we will look at some of the solver settings and controls that are located in the
system/ directory, which contains: controlDict, setFieldsDict, fvSolution, fvSchemes, and
decompose Tar Diet files.

127

The system/decomposeParDict dictionary file was covered extensively in the
simpleFoam tutorial, thus will not be discussed here.

Open the system/controlDict dictionary file. It should look like the screen capture below.

The solver settings are fairly obvious, and more detail is provided on page U-108 of the
User's Guide (http://foam.sourceforge.net/doc/Guides-a4/UserGuide.pdf). For now we will only
cover a broad view of the file.

The solver specified in application input does not matter. The solver is specified on the
command line or in a script file. Thus, this is an insignificant line for our purposes.

The ransFSFoam solver is a transient solver, thus it requires maxCo and maxDeltaT
inputs that specify the maximum possible Courant (CFL) number and time step, respectively.
When the adjustableTimeStep is set to yes the time step specified by deltaT is ignored and the
time step size is chosen by the maximum Courant number set by maxCo.

The maxCo (CFL) command is very important to solution stability. There is no single
value that is used for all cases, and in most cases the user will start out with a low CFL number
and then ramp it up once the initial solution transients die out. This is a parameter that the user
will have to gain experience over time to learn the best solution strategy. For now we will start
with CFL =5.0 and leave it as such throughout the solution, but it is not unusual to start cases
out with CFL as low as 1 and ramp it up into the 100's. The controlDict is read continuously
during the calculation, thus the CFL can be changed on the run without having to stop the run.

Near the bottom, finite volume and turbulence model libraries are dynamically loaded by
libs("..");.

At the bottom the hullForce library is loaded, which calculates forces and moment over
the hull surface. The moments are taken about the point specified by COR.

128

u

v

\\ / F ield
\\ / 0 peration
\\ / A nd
W M anipulation

OpenFOAH: The Open Source CFD Toolbox
Version: 1.4
Web: http://wvm.openfoan.org

aiiFile

version 2.0;
format ascii;

root
case "wigley":
instance
local

class dictionary:
object controlDict;

application

startFrom

startTine

stopAt

endTine

deltaT

writeControl

itelnterval

purgeWrite

writeFornat

writePrecision

wr i teConpression

t ineFornat

tinePrecision

runTineModiflable

adjustTineStep

naxCo

-V

//

interFoan:

startTine;

0;

endTine;

50;

0.01;

runTine;

10:

0;

ascii:

(>:

uncompressed;

general;

<.:

yes:

yes;

5.0:

libs ("libnavyFiniteV'olune.so" "libnavylnconpressibleRASModels.so" "libnyDynanicFvHesh.so");

naxOeltaT S.e-2;

(screen output continues on the next page...)

129

functions

(
hullForce

(
type hull Force:

// Where to load it from (if not already in solver)
functionObjectLibs ("HbhullForce.so"):

patches

CofR

(hull):

(0.5 0 0);

>i

3/ * ****** * ii

Now open the system/fvSolution dictionary file. It should look like the screen capture on
the next pages.

ThefvSolution file contains linear solver information as well as solver algorithm settings.

Notice that we are using multi-grid (GAMG) linear solvers for all of the pressure terms
instead of the conjugate gradient (PCG) solvers from the previous tutorials. The linear solver
settings and criteria are explained in further detail in the User's Guide. The important part of the
solvers is noticing the tolerance and relative tolerance (relTol) which determine when the solver
will stop iterating.

pCorr is an initial pressure calculation that is done before the first iteration only for this
case (as can be seen later on in the log file). If the mesh were moving there would be a pCorr
loop for each iteration.

The transient solver requires the PISO algorithm as opposed to the SIMPLE algorithm
that is required for steady solvers. Most of the PISO settings (correctors) specify the number of
iterations and subiterations for parameters like velocity, pressure, and gamma. Outer correctors
loop through all linear solvers (U, k, omega, /></. and gamma), non-orthogonal correctors loop
through the pressure equation, and gamma correctors and subcycles loop through the volume
fraction.

For future purposes, the user is encouraged to change the various PISO settings and look
at the log file to see how these settings effect the solution iterations. Solutions on high quality
meshes will require less correctors and subcycles, while for poor meshes it may be necessary to
have more correctors to achieve a solution. The higher the number of correctors and cycles the
solution will be more stable; however, iteration time will increase rapidly. There is no "correct"
answer for each PISO parameter.

The cGamma parameter specifies the sharpness of the interface (0 = less sharp and 1 =
most sharp). CoGamma refers to the gamma solution advancement. For now the user should
simply leave cGamma and CoGamma at 0 and 0.5 for all cases.

For the time being, make sure that your settings look like the screen. More detail on the
PISO settings is provided on page U-117 of the User's Guide
(http://foam.sourceforBe.net/doc/Guides-a4/UserGuide.pdf).

130

\\ / F ield
\\ / 0 peration

W
A nd
M anipulation

OpenFOAM: The Open Source CFD Toolbox
Version: 1.3
Web: http://wwtt.openfoan.org

I

I
-•/

// FoanX Case Dictionary.

FoanFile

(
version
fornat

root
case
instance
local

class
object

2.0;
ascn:

"wigley"

dictionary:
fvSolution:

tl * * *

solvers

(

* * • » • • * • *••••* « * • « //

pcorr CAMC

{
tolerance
relTol
ninlter
naxlter

smoother
nPreSweeps
nPostSweeps
nBottonSweeps

le-4:
0:
1;
25:

DICCaussSeidel;
0:
2
2

cacheAggloneration false:
nCellsInCoarsestLevel 10;
agglonerator faceAreaFair:
nergeLevels 1;

pd GANG

{
tolerance
relTol
ninlter
naxlter

snoother
nPreSweeps
nPostSweeps
nFinestSweeps

le-7:
0.01;

i;
25:

DICCaussSeidel:
2:
Zi
2i

cacheAggloneration false:
nCellsInCoarsestLevel 10;
agglonerator faceAreaFair:

)\
nergeLevels l:

(screen output continues on the next page...)

131

pdFinal GAMC

{
tolerance
relTol
ninlter
naxlter

le-7;
0.01;

1:
100;

nV'cycles

snoother
nPreSweeps
nPostSweeps
nFinestSweeps

DICCaussSeidel:
2;
2
2

cacheAggloneration false:
nCellsInCoarsestLevel 10;
agglonerator faceAreaPair;
nergeLevels 1;

I:

li PBiCC

{
preconditioner
tolerance
relTol
ninlter

1:
ganna PBiCC

{
preconditioner
tolerance
relTol
ninlter

.1:
k PBiCC

DI LU;
le-09
0.001
1:

DILU:
le-08
0;
1:

I
preconditi oner
tolerance
relTol
ninlter

DILU:
le-07
0.01;
1;

).
onega PBiCC

preconditioner
tolerance
relTol
ninlter

DILU:
le-07
0.01:
1;

1:

PI SO

{
nonentunPredictor yes;
nOuterCorrectors 2:
nCorrectors 1;
nNonOrthogonalCorrectors 0;

132

nCannaCorr 2:
nCannaSubCycles i:
cCaniia 0:
CoCamia 0.5

)

relaxa t ionFac tors

I
pd 0.2
U 0.7
k 0.5
onega 0.5
ganna 0.5

0 /'

Now open the system/fvSchemes dictionary file. The file is the same as tutorials cases
except for additional divergence and flux terms. Under the divSchemes section gamma (phi and
phirb) divergence terms are needed for the VOF solution. Also, pd, gamma, and pcorr flux terms
are required under the fluxRequired section. Your file should look like the screen capture on the
next page.

133

/ F ield
0 peration
A nd
M anipulation

OpenFOAM: The Open Source CFD Toolbox
Version: 1.3
Web: http://www.openfoan.org

FoanFile
{

version
fiirm.it

root
case
instance
local

class
object

2.0;
ascii:

"wigley"

dictionary;
fvSchenes;

ddtSchenes

default Euler;

gradSchemes

default

divSchenes

div(rho'phi.U)

div(phi.ganna)
divfphirb,gamma)

div(phi.k)
div(phi,omega)

laplacianSchemes

default

interpolationSchemes

default

snGradSchemes

default

U

Gauss 1inear;

Gauss linearl'pwind cellLimited Gauss linear 1.0:

Gauss vanLeerOl;
Gauss interfaceConpression;

Gauss upwind;
Gauss upwind:

Gauss linear corrected;

linear;

corrected;

134

fluxRequired

(
default
pd:
pcorr;
ganna;

w • • * * //
Now open the system/setFieldsDict dictionary file. This dictionary can be used to initially

set flow field parameters over the entire domain. For now we will use it to set the domain
volume fraction up appropriately. The field is initially set to air (defaultFieldValues setting
gamma 0). The regions section uses boxToCell to set every cell within a box defined by the
minimum and maximum rectangular points (which can extend outside the domain) to water
(gamma 1).

0 n

v-
FoanFile

{

\\ /
\\ /

/ F ield
0 peration
A nd
M anipulation

OpenFOAM: The Open Source CFD Toolbox
Version: 1.3
Web: http://vmw.openfoan.org

version
fiirm.it

root
case
instance
local

class
object

2.0;
ascii;

"systen":

dictionary;
setFieldsDict;

// //

defaultFieldValues

volScalarFieldValue ganna 0

):

regions

(
boxToCell

(

box (-10 0 -20) (20 20 0);

fieldValues
(

volScalarFieldValue ganna 1

):

II • *««******«-****************4*-ft******<*******<***** + **«**4**«*«************* It

135

The sell hi ds command will alter the O/gamma file, so it is wise to make a copy of your
original file. This can be done in Linux by:

> > cp -r O/gamma 0/Original_gamma

Now we are ready to set the initial flow field with the set Fields command which executes
the setFieldsDict dictionary. Enter setFields into the command line. Your output should look
like the screen capture below.

[delaneykQanazon wigley_tutorial]$ setFields

OpenFOAM

 \

1 w / F ield The Open Source CFD Toolbox 1

1 \\ / 0 peration Version: 1.5-dev 1

1 \\ / A nd Revision exported 1
I W H ampulation Neb: http://www.0penF0AM.org |
v * __ _ •/

Exec : setFields
Date : Jun 21 2010
Tine : 11:05:12
Host : anazon.dt.navy.nil
PID : 31380
Case : /san/hone/delaneyk/l JavyFOAM-l 5-dev-rev995/delaneyk-l.S-dev7run/wigley/tutorial/wigley_tutorial
nProcs : 1

// * ' **«*»***•** »*****•******« + **** //

Create tine

-> FOAM Warning :
Fron function dlLibraryTable::open(const fileNane* functlonLibNane)
in file db/dlLibraryTable/dlLibraryTable.C at line 86
could not load /san/hone/delaneyk/NavyFOAM-1.S-dev-rev995/NavyF0AM/lib/linux64CccDPOpt/libnavylnconpr

essibleRASModels.so: undefined symbol: _ZN4Foanl4inconpressible8RASModelllprintCoeffsEv
Create nesh for tine = 0

Reading setFieldsDict

Setting field default values
Setting volScalarField ganna

Setting field region values
Adding cells with center within box (-10 0 -20) (20 20 0)
Setting volScalarField ganna

End
[delaneyk&anazon wigley_tutorial]$

It is wise to make sure that the setFields command did what it was supposed to do by
viewing the results. Previous tutorials go over how to get OpenFOAM results into EnSight
(foamToEnSighi) and ParaView (foamToVTK).

Once the case is imported into your post-processor of choice, your domain should look
like the picture below. You should have gamma equal to zero above z=0 and gamma equal to 1
below z=0.

136

Running the Case

Now the problem is set up correctly and ready to run. The final step is to decompose the
domain by the decomposePar command.

You should now have 8 processor files (processorO -> processor?) located in your case
directory.

The final step is to submit your script (oFoant.scp in this example), and then the job will
run.

>>qsub oFOAM.scp

Remember that at the bottom of our controlDict file, we specified a function named
hullForces. This file calculates forces over the patch specified by patches {hull in our case), and
places them in a directory named hullForce under a time file name that corresponds to
startTime.

Now let the file run out until its endTime of 50 seconds.

You can open or tail the log file to monitor your solution residuals and look at your linear
solution strategy that was set under the PISO section in system/fvSolution. Monitoring the
pressure residuals and the velocity magnitude value from iteration to iteration will give you a
good idea of your solution strategy. Rapidly increasing pressure residuals or velocity magnitudes
over consecutive iterations usually mean the solution is diverging.

Post-Processing

Notice that there are many time directories in your processor directories. Each of these
directories contains output information for their respective time step.

To reconstruct the data from the decomposed processors use the command

>> reconstnictPar -latest Time

137

The -latestTime means only reconstruct the last time in the processor* files. The
command -time time# will reconstruct for a specific time (time#) only. If only reconstructPar is
specified, then all time directories in the processor* files will be reconstructed.

To look at the post-processed results simply type the following commands, depending on
the post-processing tool of choice:

»foamToEnSight -latestTime -> to look at the results in EnSight

» foamToVTK -latestTime -> to look at the results in ParaView

where the command -latestTime is used to only look at the results from the last output time step.
To look at the results for all time steps simply leave off the -latestTime command, and to look at
the results for a specific time (ie 0.005) use -time 0.005.

To look at the results in ParaFoam, no additional commands are needed, simply open
ParaFoam in the case directory.

Your results should look like the following figures.

Bow Wave:

138

Free Surface Contour Plot:

139

THIS PAGE INTENTIONALLY LEFT BLANK

140

References

1. Weller, H. G., Tabor, G., Jasak, H., and Fureby, C, "A Tensorial Approach to
Computational Continuum Mechanics Using Object-Oriented Techniques," Computers in
Physics, 12(6), pp. 620 - 631, 1998.

2. Kim, S.-E., Schroeder, S. and Jasak, H., (2010), "A Multiphase CFD Framework for
Predicting Performance of Marine Propulsors," Thirteenth international Symposium on
Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, Hawaii, April 4 -
9,2010.

3. Wilcox, D.C., Turbulence Modeling for CFD, DCW Industries, 1998.
4. Gaskell, P.H. and Lau, A.K.C.,"Curvature-Compensated Convective Transport: SMART,

a New Boundedness-Preserving Transport Algorithm," Int. J. Numer. Methods Fluids,
Vol. 8, p. 617, 1988.

5. Leonard, B.P., "Simple High-Accuracy Resolution Program for Convective Modeling of
Discontinuities," Int. J. Numer. Meth. Fluids, Vol. 8, pp. 1291-1318, 1988.

6. Godunov, S.K., "Finite Difference Method for Numerical Computation of Discontinuous
Solutions of the Equations of Fluid Dynamics," Mat. Shornik, Vol. 47, pp. 271-306,
1959.

7. van Leer, B., "Towards the Ultimate Conservative Difference Scheme. V. A Second-
Order Sequel to Godunov's Method,"/ Comput. Phys., Vol. 32, p. 101, 1979.

8. Jasak, H. Weller, H.G., and Gosman, A.D., "High Resolution NVD Differencing Scheme
for Arbitrarily Unstructured Meshes," Int. J. Numer. Methods Fluids, Vol. 31, p. 431,
1999.

9. Leonard, B.P., "The ULTIMATE Conservative Difference Scheme Applied to Unsteady
One-Dimensional Advection," Comp. Meth. Appl. Mech. Eng., Vol. 88, pp. 17-74, 1991.

10. Ubbink O. and Issa, R.I., "Method for Capturing Sharp Fluid Interfaces on Arbitrary
Meshes,"/ Comput. Phys., Vol. 153, pp. 26-50, 1999.

11. Muzaferija S. and Peric M., "Computation of Free Surface Flows Using Interface-
Tracking and Interface-Capturing Methods," Computational Mechanics Publications,
WIT Press, Southhampton, nonlinear water wave interaction edition. Vol. 3. pp. 59 100,
1998.

12. Park, I.R., Kim, K.S., Kim, J., and Van, S.H., "A Volume-Of-Fluid Method for
Incompressible Free Surface Flows," Int. J. Numer. Meth. Fluids, Vol. 61, pp. 1331-
1362,2009.

13. Jasak H, and Weller H., "Interface Tracking Capabilities of the Inter-Gamma
Differencing Scheme". Internal Report, Mechanical Engineering Department, Imperial
College of Science, London, 1995.

14. Khosla, P.K. and Rubin, S.G., "A Diagonally Dominant Second-Order Accurate Implicit
Scheme," Comput. Fluids, Vol. 2, p. 207, 1974.

15. Hayase, T., Humphrey, J.A.C., and Greif, R., "A Consistently Formulated QUICK
Scheme for Fast and Stable Convergence Using Finite-Volume Iterative Calculation
Procedures,"/. Comput. Phys. Vol. 98, p. 108, 1992.

16. Holmes, D.G. and Connell, S.D., "Solution of the 2D Navier-Stokes Equations on
Unstructured Adaptive Grids," AIAA-1989-1932, 1989.

17. Frink, N.T., "Recent Progress Toward a Three-Dimensional Unstructured Navier-Stokes
Flow Solver," AIAA-94-0061, 1994.

141

18. Kim, S.-E., Makarov, B. and Caraeni, D., "A Multi-Dimensional Linear Reconstruction
Scheme for Arbitrary Unstructured Mesh," AIAA-2003-3990, 2003.

19. Delaney, K., Kim, S-E. and Shan, H., "Computational Investigation of Maneuvering
Characteristics of Non-Bodies-of-Revolution," Proceedings Open Source Computing
International Conference (OSCIC), Munich, Germany, Nov., 2010.

20. Kim, S.-E. and Rhee, S. H., "Assessment of Eight Turbulence Models for a Three-
Dimensional Boundary layer Involving Crossflow and Streamwise Vortices," AIAA
Paper 2002-0852, 2002.

21. Kim, S.-E., Rhee, B., Shan, H., and Gorski, J., Paterson, E. and Maki, K., "Prediction of
Turbulent Free-Surface Flows Around Surface Ships Using a Scalable Unstructured
Finite-Volume Based RANS Solver" Proceeding Gothenburg 2010 Workshop on CFD
in Hydrodynamics, Gothenburg, Sweden, Dec, 2010.

22. Shih, T.-H., Liou, W.W., Shabbir, A., and Zhu, J., "A New k-e Eddy-Viscosity Model for
High Reynolds Number Turbulent Flows - Model Development and Validation,"
Computers & Fluids, Vol. 24, No. 3, pp. 227-238, 1995.

23. Menter, F. R., "Two-Equation Eddy-Viscosity Turbulence Models for Engineering
Applications," AIAA J., Vol.32, No.8, pp. 1598-1605, 1994.

142

Report Distribution

No of Copies

Print PDF Office Individual

4 HPCMP Paula Gibson, Myles Hurvvi
Kendall, Doug Post

2 PSU/ARL David Boger, Eric Paterson

1 Univ of
Michigan

Kevin Maki

1 DTIC

No of Copies

Print PDF NSWCCD
Code

Individual

1 3452 Library

1 5060 D. Walden

11 5700 P. Chang, I

5800

P. Chang, K. Delaney, M. Ebert, J. Gorski,
R. Miller, S-E. Kim, B. Rhee, H. Shan, J.
Slomski, A. vonLoebbecke, W. Wilson

R. Hurwitz

